Skip to main content
Log in

Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We demonstrate the fabrication by anodization of niobium oxide microcones, several microns long, from aqueous solutions of 1 wt% hydrogen fluoride (HF) with varied sodium fluoride (NaF) concentration (0-1 M). Raman spectroscopy and x-ray diffractometer analysis revealed the as-grown microcones to be crystalline Nb2O5_xwith preferred (1 0 0) and (0 1 0) orientations. The overall Nb2O5_xformation rate increased with the increasing NaF concentration, and structures as tall as 20 μm were achieved in just 20 min of anodization at 1 M NaF. Rapid formation of niobia microcones was even observed in the absence of HF at this NaF concentration. Photocatalytic activity for water oxidation was highest for microcones grown under the highest NaF concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. I.E. Wachs, J.M. Jehng, G. Deo, H. Hu, and N. Arora: Redox properties of niobium oxide catalysts. Catal. Today 28, 199 (1996).

    Article  CAS  Google Scholar 

  2. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, and K. Kalantar-Zadeh: Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014).

    Article  CAS  Google Scholar 

  3. I. Nowak and M. Ziolek: Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem. Rev. 99, 3603 (1999).

    Article  CAS  Google Scholar 

  4. J.E. Yoo, J. Park, G. Cha, and J. Choi: Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications. Thin Solid Films 531, 583 (2013).

    Article  CAS  Google Scholar 

  5. K. Nagahara, M. Sakairi, H. Takahashi, K. Matsumoto, K. Takayama, and Y. Oda: Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim. Acta 52, 2134 (2007).

    Article  CAS  Google Scholar 

  6. B. Tzvetkov, M. Bojinov, and A. Girginov: Nanoporous oxide formation by anodic oxidation of Nb in sulphate-fluoride electrolytes. J. Solid State Electrochem. 13, 1215 (2009).

    Article  CAS  Google Scholar 

  7. K. Lee, Y. Yang, M. Yang, and P. Schmuki: Formation of highly ordered nanochannel Nb oxide by self-organizing anodization. Chem.: Eur. J. 18, 9521 (2012).

    Article  CAS  Google Scholar 

  8. J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, and K. Kalantar-Zadeh: Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6, 4045 (2012).

    Article  CAS  Google Scholar 

  9. R.L. Karlinsey: Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochem. Commun. 7, 1190 (2005).

    Article  CAS  Google Scholar 

  10. R.L. Karlinsey: Self-assembled Nb2O5 microcones with tailored crystallinity. J. Mater. Sci. 41, 5017 (2006).

    Article  CAS  Google Scholar 

  11. S. Yang, H. Habazaki, T. Fujii, Y. Aoki, P. Skeldon, and G.E. Thompson: Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes. Electrochim. Acta 56, 7446 (2011).

    Article  CAS  Google Scholar 

  12. Y. Oikawa, T. Minami, H. Mayama, K. Tsujii, K. Fushimi, Y. Aoki, P. Skeldon, G.E. Thompson, and H. Habazaki: Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Mater. 57, 3941 (2009).

    Article  CAS  Google Scholar 

  13. B.Y. Jeong and E.H. Jung: Micro-mountain and nano-forest pancake structure of Nb2O5 with surface nanowires for dye-sensitized solar cells. Met. Mater. Int. 19, 617 (2013).

    Article  CAS  Google Scholar 

  14. R.L. Karlinsey and K. Yi: Self-assembly and bioactive response of a crystalline metal oxide in a simulated blood fluid. J. Mater. Sci.: Mater. Med. 19, 1349 (2008).

    CAS  Google Scholar 

  15. D.D. Yao, R.A. Rani, A.P. O’Mullane, K. Kalantar-zadeh, and J.Z. Ou: High performance electrochromic devices based on anodized nanoporous Nb2O5. J. Phys. Chem. C 118, 476 (2014).

    Article  CAS  Google Scholar 

  16. K. Kato and S. Tamura: Crystal-structure of T-Nb2O5. Acta Crystallogr. B: Struct. Sci. 31, 673 (1975).

    Article  Google Scholar 

  17. S. Tamura, K. Kato, and M. Goto: Single-crystals of T-Nb2O5 obtained by slow cooling method under high-pressures. Z. Anorg. Allg. Chem. 410, 313 (1974).

    Article  CAS  Google Scholar 

  18. Y. Kobayashi, H. Hata, M. Salama, and T.E. Mallouk: Scrolled sheet precursor route to niobium and tantalum oxide nanotubes. Nano Lett. 7, 2142 (2007).

    Article  CAS  Google Scholar 

  19. Y. Murakami, Y. Wada, and A. Morikawa: Catalytic activity of nonstoichiomeric niobium oxide with controlled composition, NbO2.488-2.500, for butene isomerization. Bull. Chem. Soc. Jpn. 61, 2747 (1988).

    Article  CAS  Google Scholar 

  20. A.L. Patterson: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  21. M.R.N. Soares, S. Leite, C. Nico, M. Peres, A.J.S. Fernandes, M.P.F. Graca, M. Matos, R. Monteiro, T. Monteiro, and F.M. Costa: Effect of processing method on physical properties of Nb2O5. J. Eur. Ceram. Soc. 31, 501 (2011).

    Article  CAS  Google Scholar 

  22. R. Brayner and F. Bozon-Verduraz: Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 5, 1457 (2003).

    Article  CAS  Google Scholar 

  23. F.D. Hardcastle and I.E. Wachs: Determination of molybdenum oxygen bond distances and bond orders by Raman-spectroscopy. J. Raman Spectrosc. 21, 683 (1990).

    Article  CAS  Google Scholar 

  24. J.H. Lim, G. Park, and J. Choi: Synthesis of niobium oxide nanopowders by field-crystallization-assisted anodization. Curr. Appl. Phys. 12, 155 (2012).

    Article  Google Scholar 

  25. H. Habazaki, T. Ogasawara, H. Konno, K. Shimizu, S. Nagata, P. Skeldon, and G.E. Thompson: Field crystallization of anodic niobia. Corros. Sci. 49, 580 (2007).

    Article  CAS  Google Scholar 

  26. J.F. Jackson and J.C. Hendy: The use of niobium as an anode material in liquid filled electrolytic capacitors. Electrocomp. Sci. Technol. 1, 27 (1974).

    Article  CAS  Google Scholar 

  27. J.L. Zhao, X.X. Wang, R.Q. Xu, Y.J. Mi, and Y.X. Li: Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid State Lett. 10, C31 (2007).

    Article  CAS  Google Scholar 

  28. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall: The NBS tables of chemical and thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Supplement 2, p. 38 and 207 (1982).

  29. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, R. Ab Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner, and K. Kalantar-Zadeh: Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chem. Commun. 49, 6349 (2013).

    Article  CAS  Google Scholar 

  30. T. Ruff, R. Hahn, M.S. Killian, H. Asoh, S. Ono, and P. Schmuki: Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere. Electrochim. Acta 62, 402 (2012).

    Article  CAS  Google Scholar 

  31. H. Huang, C. Wang, J. Huang, X.M. Wang, Y.K. Du, and P. Yang: Structure inherited synthesis of N-doped highly ordered mesoporous Nb2O5 as robust catalysts for improved visible light photoactivity. Nanoscale 6, 7274 (2014).

    Article  CAS  Google Scholar 

  32. J.Y. Gan, X.H. Lu, and Y.X. Tong: Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6, 7142 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. S. acknowledges financial support from the American University in Cairo via a graduate student research grant. Additional support was provided by LiOx Power Inc. and by the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageh K. Allam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, B.S., Davenport, T.C., Salem, H.G. et al. Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones. MRS Communications 5, 495–501 (2015). https://doi.org/10.1557/mrc.2015.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.43

Navigation