Skip to main content
Log in

Ternary blend all-polymer solar cells: enhanced performance and evidence of parallel-like bulk heterojunction mechanism

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

All-polymer solar cells composed of binary blends of donor poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6- diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene-)-2–6-diyl)] (PBDTTT-CT ), and acceptor polymers naphthalene diimide-selenophene copolymer (PNDIS-HD) and perylene diimide-selenophene copolymer (PPDIS) had power conversion efficiencies (PCEs) of 1.3 and 2.1%, respectively. Ternary blend solar cells composed of [PBDTTT-CT][PNDIS-HD]1−x[PPDIS]x at 75 wt% PPDIS had a PCE of 3.2%, which is about a 50%–140% enhancement compared with the binary blend devices. Equality of the ternary blend short-circuit current to the sum of those of the binary blend devices, among other results, provided evidence of a parallel-like bulk heterojunction mechanism in the ternary blend solar cells. These results provide the first example of enhanced performance in ternary blend all-polymer solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.

Similar content being viewed by others

References

  1. T. Earmme, Y.-J. Hwang, S. Subramaniyan, and S.A. Jenekhe: All-polymer bulk heterojunction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Adv. Mater. 26, 6080 (2014).

    Article  CAS  Google Scholar 

  2. C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, F. Huang, A. Facchetti, H. Ade, and H. Yan: High-efficiency all-polymer solar cells based on a pair of crystalline lowbandgap polymers. Adv. Mater. 26, 7224 (2014).

    Article  CAS  Google Scholar 

  3. D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito: Highly efficient chargecarrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci. 7, 2939 (2014).

    Article  CAS  Google Scholar 

  4. C. Lee, H. Kang, W. Lee, T. Kim, K.-H. Kim, H.Y. Woo, C. Wang, and B.J. Kim: High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv. Mater. 27, 2466 (2015).

    Article  CAS  Google Scholar 

  5. Y.-J. Hwang, T. Earmme, B. A.E. Courtright, F.N. Eberle, and S.A. Jenekhe: n-type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J. Am. Chem. Soc. 137, 4424 (2015).

    Article  CAS  Google Scholar 

  6. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao: Enhanced powerconversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591 (2012).

    Article  Google Scholar 

  7. G. Li, R. Zhu, and Y. Yang: Polymer solar cells. Nat. Photonics 6, 153 (2012).

    Article  CAS  Google Scholar 

  8. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen: Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dualdoped zinc oxide nano-film as cathode interlayer. Sci. Rep. 4, 6813 (2014).

    Article  CAS  Google Scholar 

  9. B.M. Savoie, S. Dunaisky, T.J. Marks, and M.A. Ratner: The scope and limitations of ternary blend organic photovoltaics. Adv. Energy Mater. 5, 1400891 (2015).

    Article  Google Scholar 

  10. T. Ameri, P. Khoram, J. Min, and C.J. Brabec: Organic ternary solar cells: a review. Adv. Mater. 25, 4245 (2013).

    Article  CAS  Google Scholar 

  11. L. Yang, H. Zhou, S.C. Price, and W. You: Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432 (2012).

    Article  CAS  Google Scholar 

  12. P.P. Khlyabich, B. Burkhart, and B.C. Thompson: Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534 (2011).

    Article  CAS  Google Scholar 

  13. J.-S. Huang, T. Goh, X. Li, M.Y. Sfeir, E.A. Bielinski, S. Tomasulo, M.L. Lee, N. Hazari, and A.D. Taylor: Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photonics 7, 479 (2013).

    Article  CAS  Google Scholar 

  14. L. Lu, T. Xu, W. Chen, E.S. Landry, and L. Yu: Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8, 716 (2014).

    Article  CAS  Google Scholar 

  15. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou: Replacing alkoxy groups with alkythienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew. Chem. 123, 9871 (2011).

    Article  Google Scholar 

  16. T. Earmme, Y.-J. Hwang, N.M. Murari, S. Subramaniyan, and S.A. Jenekhe: All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960 (2013).

    Article  CAS  Google Scholar 

  17. B.P. Rand, D.P. Burk, and S.R. Forrest: Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. 75, 115327 (2007).

    Article  Google Scholar 

  18. G. Ren, C.W. Schlenker, E. Ahmed, S. Subramaniyan, S. Olthof, A. Kahn, D.S. Ginger, and S.A. Jenekhe: Photoinduced hole transfer becomes suppressed with diminished driving force in polymer-fullerene solar cells while electron transfer remains active. Adv. Funct. Mater. 23, 1238 (2013).

    Article  CAS  Google Scholar 

  19. A.J. Heeger: 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Micah Glaz for his assistance in obtaining AFM images. This work was supported by the NSF (DMR-1409687). B.A.E.C. is a Clean Energy Institute (CEI) fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson A. Jenekhe.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.36

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, YJ., Courtright, B.A.E. & Jenekhe, S.A. Ternary blend all-polymer solar cells: enhanced performance and evidence of parallel-like bulk heterojunction mechanism. MRS Communications 5, 229–234 (2015). https://doi.org/10.1557/mrc.2015.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.36

Navigation