Skip to main content

Advertisement

Log in

Platinum and hybrid polyaniline–platinum surfaces for the electrocatalytic reduction of CO2

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Catalyst development is needed to enable the use of renewable electricity to chemically convert carbon dioxide (CO2) and water into fuels and chemicals, a more sustainable, lower-carbon alternative to conventional processes that produce fuels and chemicals based on fossil resources. In this study, the catalytic activity and selectivity of polycrystalline platinum (Pt) is thoroughly characterized for the CO2 reduction reaction, based on an electrochemical cell design that offers high sensitivity for product detection. Thin polyaniline films are then electrodeposited onto polycrystalline Pt foils to form hybrid organic–inorganic surfaces. The addition of the polymer is observed to have an impact on the catalytic chemistry, yielding up to a fivefold enhancement in formate and CO production over pure Pt foils. This work elucidates new strategies to perturb interfacial chemistry in a manner that could help steer CO2 electro-reduction catalysis in desired directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, and J.M. Tarascon: Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011).

    Article  CAS  Google Scholar 

  2. N.S. Lewis: Toward cost-effective solar energy use. Science 315, 798 (2007).

    Article  CAS  Google Scholar 

  3. M. Aresta: Carbon Dioxide as a Chemical Feedstock (Weinheim, Wiley- VCH, John Wiley & Sons, 2010).

    Book  Google Scholar 

  4. D.T. Whipple and P.J.A. Kenis: Prospects of CO2 Utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451 (2010).

    Article  CAS  Google Scholar 

  5. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, and L. Oniciu: Electrochemical reduction of carbon dioxide on flat metallic cathodes. J. Appl. Electrochem. 27, 875 (1997).

    Article  CAS  Google Scholar 

  6. Y. Hori, H. Wakebe, T. Tsukamoto, and O. Koga: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833 (1994).

    Article  CAS  Google Scholar 

  7. K.P. Kuhl, E.R. Cave, D.N. Abram, and T.F. Jaramillo: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).

    Article  CAS  Google Scholar 

  8. D.R. Kauffman, D. Alfonso, C. Matranga, H. Qian, and R. Jin: Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237 (2012).

    Article  CAS  Google Scholar 

  9. Y. Chen, C.W. Li, and M.W. Kanan: Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J. Am. Chem. Soc. 134, 19969 (2012).

    Article  CAS  Google Scholar 

  10. M. Watanabe, M. Shibata, A. Katoh, T. Sakata, and M. Azuma: Design of alloy electrocatalysts for CO2 reduction: improved energy efficiency, selectivity, and reaction rate for the CO2 electroreduction on Cu alloy electrodes. J. Electroanal. Chem. Interfacial Electrohem. 305, 319 (1991).

    Article  CAS  Google Scholar 

  11. B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, and R.I. Masel: Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643 (2011).

    Article  CAS  Google Scholar 

  12. K. Ogura, N. Endo, and M. Nakayama: Mechanistic studies of CO2 reduction on a mediated electrode with conducting polymer and inorganic conductor films. J. Electrochem. Soc. 145, 3801 (1998).

    Article  CAS  Google Scholar 

  13. B. Aurian-Blajeni, I. Taniguchi, and J.O.M. Bockris: Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon. J. Electroanal. Chem. 149, 291 (1983).

    CAS  Google Scholar 

  14. R. Aydin and F. Koleli: Electrochemical reduction of CO2 on a polyaniline electrode under ambient conditions and at high pressure in methanol. J. Electroanal. Chem. 535, 107 (2002).

    Article  CAS  Google Scholar 

  15. A. Zhang, W. Zhang, J. Lu, G.G. Wallace, and J. Chen: Electrocatalytic reduction of carbon dioxide by cobalt-phthalocyanine-incorporated polypyrrole. Electrochem. Solid-State Lett. 12, E17 (2009).

    Article  CAS  Google Scholar 

  16. G.T. Rochelle: Amine scrubbing for CO2 capture. Science 325, 1652 (2009).

    Article  CAS  Google Scholar 

  17. A.A. Peterson and J.K. Nørskov: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251 (2012).

    Article  CAS  Google Scholar 

  18. G.M. Brisard, A.P.M. Camargo, F.C. Nart, and T. Iwasita: On-line mass spectrometry investigation of the reduction of carbon dioxide in acidic media on polycrystalline Pt. Electrochem. Commun. 3, 603 (2001).

    CAS  Google Scholar 

  19. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, and T.F. Jaramillo: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  CAS  Google Scholar 

  20. C.M.G.S. Cruz and E.A. Ticianelli: Electrochemical and ellipsometric studies of polyaniline films grown under cycling conditions. J. Electroanal. Chem. 428, 185 (1997).

    Article  CAS  Google Scholar 

  21. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, and H.N. Dinh: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2011).

    Article  Google Scholar 

  22. E.P.M. Leiva, E. Santos, and T. Iwasita: The effect of adsorbed carbon monoxide on hydrogen adsorption and hydrogen evolution on platinum. J. Electroanal. Chem. Interfacial Chem. 215, 357 (1986).

    Article  CAS  Google Scholar 

  23. C.Q. Cui, X.H. Su, and J.Y. Lee: Measurement and evaluation of polyaniline degradation. Polym. Degrad. Stab. 41, 69 (1993).

    Article  CAS  Google Scholar 

  24. K.J. Schouten: Electrocatalytic Carbon Dioxide Reduction, a Mechanistic Study, in Chemistry (Leiden University, Leiden Institute of Chemistry, Netherlands, 2013).

    Google Scholar 

  25. S. Zhang, P. Kang, and T.J. Meyer: Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734 (2014).

    Article  CAS  Google Scholar 

  26. A.G. MacDiarmid, J.C. Chiang, and A.F. Richter: Polyaniline–a new concept in conducting polymers. Synth. Met. 18, 285 (1987).

    Article  CAS  Google Scholar 

  27. A.J. Morris, R.T. McGibbon, and A.B. Bocarsly: Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. ChemSusChem 4, 191 (2011).

    Article  CAS  Google Scholar 

  28. E.B. Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, and A.B. Bocarsly: Using a one-electron shuttle for the multielectron reduction of CO2 to methanol–kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132, 11539 (2010).

    Article  Google Scholar 

  29. K.D. Vogiatzis, A. Mavrandonakis, W. Klopper, and G.E. Froudakis: Ab initio study of the interactions between CO2 and N-containing organic heterocycles. Chemphyschem: Eur. J. Chem. Phys. Phys. Chem. 10, 374 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Global Climate Energy Project at Stanford University as well as the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0008685. D. N. A. acknowledges fellowship support from Chevron through the Stanford Graduate Fellowship (SGF) Program. E. R. C. and K. P. K. acknowledge fellowship support from the National Science Foundation Graduate Research Fellowship Program (NSF GRFP). The authors also acknowledge Ms. Michelle Vezie for technical assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Jaramillo.

Supporting Information for

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abram, D.N., Kuhl, K.P., Cave, E.R. et al. Platinum and hybrid polyaniline–platinum surfaces for the electrocatalytic reduction of CO2. MRS Communications 5, 319–325 (2015). https://doi.org/10.1557/mrc.2015.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.30

Navigation