Skip to main content
Log in

The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The design of π-conjugated molecules and polymers has driven the increase in efficiency of bulk heterojunction organic photovoltaic devices from <1% to over 12%. The pathways to generation of free charge carriers are still being uncovered. By focusing on blends of conjugated polymers with fullerenes, recent work has highlighted the impact of the design of donor–acceptor polymers on optoelectronic properties and phase-separated morphologies. This morphology of the active layer is largely controlled by processing conditions, such as use of processing additives. Developing a deep understanding of the impact of polymer chemistry and processing at the laboratory scale is key to translating the technology of organic photovoltaics from the research scale to large-area modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Table I.
Figure 10.

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 44). Prog. Photovolt: Res. Appl. 22, 701 (2014).

    Google Scholar 

  2. S.B. Darling and F. You: The case for organic photovoltaics. RSC Adv. 3, 17633 (2013).

    CAS  Google Scholar 

  3. K.A. Mazzio and C.K. Luscombe: The future of organic photovoltaics.Chem. Soc. Rev. 44, 78 (2015).

    CAS  Google Scholar 

  4. C.J. Mulligan, C. Bilen, X. Zhou, W.J. Belcher, and P.C. Dastoor: Levelised cost of electricity for organic photovoltaics. Sol. Energy Mater. Sol. Cells 133, 26 (2015).

    CAS  Google Scholar 

  5. US Energy Information Administration: Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook. 2014. http://www.eia.gov/.

    Google Scholar 

  6. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, and A.N. Tiwari: Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 3, 572 (2013).

    Google Scholar 

  7. M. Powalla, W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, D. Hariskos, R. Menner, A. Bauer, S. Spiering, E. Ahlswede, T.M. Friedlmeier, D. Blazquez-Sanchez, I. Klugius, and W. Wischmann: CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J. Photovolt. 4, 440 (2014).

    Google Scholar 

  8. G.G. Pethuraja, R.E. Welser, and A.K. Sood: Roll-to-roll solution process method for fabricating CIGS solar cells and system for the same. U.S. Patent No. 8,865,506, October 21, (2014).

    Google Scholar 

  9. C.M. Amb, M.R. Craig, U. Koldemir, J. Subbiah, K.R. Choudhury, S.A. Gevorgyan, M. TJørgensen, F.C. Krebs, F. So, and J.R. Reynolds: Aesthetically pleasing conjugated polymer:fullerene blends for bluegreen solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 4, 1847 (2012).

    CAS  Google Scholar 

  10. F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, and M.S. Pedersen: Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ. Sci. 3, 512 (2010).

    CAS  Google Scholar 

  11. C.-C. Chueh, S.-C. Chien, H.-L. Yip, J.F. Salinas, C.-Z. Li, K.-S. Chen, F.-C. Chen, W.-C. Chen, and A.K.Y. Jen: Toward high-performance semitransparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 3, 417 (2013).

    CAS  Google Scholar 

  12. Z.M. Beiley, M.G. Christoforo, P. Gratia, A.R. Bowring, P. Eberspacher, G.Y. Margulis, C. Cabanetos, P.M. Beaujuge, A. Salleo, and M.D. McGehee: Semi-transparent polymer solar cells with excellent subbandgap transmission for third generation photovoltaics. Adv. Mater. 25, 7020 (2013).

    CAS  Google Scholar 

  13. L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You, and Y. Yang: A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825 (2013).

    CAS  Google Scholar 

  14. International Energy Agency: Technology Roadmap: Solar Photovoltaic Energy (2010).

    Google Scholar 

  15. C.W. Tang: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).

    CAS  Google Scholar 

  16. D.L. Morel, A.K. Ghosh, T. Feng, E.L. Stogryn, P.E. Purwin, R.F. Shaw, and C. Fishman: High–efficiency organic solar cells. Appl. Phys. Lett. 32, 495 (1978).

    CAS  Google Scholar 

  17. A.K. Ghosh and T. Feng: Merocyanine organic solar cells. J. Appl. Phys. 49, 5982 (1978).

    CAS  Google Scholar 

  18. R.F. Service: Outlook brightens for plastic solar cells. Science 332, 293 (2011).

    CAS  Google Scholar 

  19. Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%. http://www.heliatek.com/newscenter/latest_news/neuer-weltrekordfur-organische-solarzellen-heliatek-behauptet-sich-mit-12-zelleffizienzals-technologiefuhrer/?lang=en

  20. C.M. Amb, S. Chen, K.R. Graham, J. Subbiah, C.E. Small, F. So, and J.R. Reynolds: Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 133, 10062 (2011).

    CAS  Google Scholar 

  21. C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.-W. Tsang, T.-H. Lai, J.R. Reynolds, and F. So: High-efficiency inverted dithienogermolethienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115 (2012).

    CAS  Google Scholar 

  22. J.E. Coughlin, Z.B. Henson, G.C. Welch, and G.C. Bazan: Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 47, 257 (2013).

    Google Scholar 

  23. B. Kippelen and J.-L. Bredas: Organic photovoltaics. Energy Environ. Sci. 2, 251 (2009).

    CAS  Google Scholar 

  24. E.J. Askat, P.W. Adam, R.T. John, C. Wai-Lun, S. Na, G. Raluca, G.K. Loren, J.W. Kenrick, L. Kevin, J.R. Peter, and X.Y. Zhu: Hot chargetransfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66 (2012).

    Google Scholar 

  25. G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.J. Egelhaaf, D. Brida, G. Cerullo, and G. Lanzani: Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29 (2013).

    CAS  Google Scholar 

  26. D.A. Vithanage, A. Devižis, V. Abramavićius, Y. Infahsaeng, D. Abramavićius, R.C.I. MacKenzie, P.E. Keivanidis, A. Yartsev, D. Hertel, J. Nelson, V. Sundström, and V. Gulbinas: Visualizing charge separation in bulk heterojunction organic solar cells. Nat. Commun. 4, 2334 (2013).

    Google Scholar 

  27. S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, and R.H. Friend: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512 (2014).

    Google Scholar 

  28. K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer, J.D. Douglas, M. Schubert, W.R. Mateker, J.T. Bloking, G.F. Burkhard, A. Sellinger, J.M.J. Fréchet, A. Amassian, M.K. Riede, M.D. McGehee, D. Neher, and A. Salleo: Efficient charge generation by relaxed chargetransfer states at organic interfaces. Nat. Mater. 13, 63 (2014).

    CAS  Google Scholar 

  29. J.-L. Bredas: When electrons leave holes in organic solar cells. Science 343, 492 (2014).

    CAS  Google Scholar 

  30. W. Li and W. You: Donor-acceptor alternating copolymers. In Conjugated Polymers: A Practical Guide to Synthesis, edited by K. Müllen, J.R. Reynolds, and T. Masuda (The Royal Society of Chemistry, 2014) 319–342.

    Google Scholar 

  31. J. Mei and Z. Bao: Side chain engineering in solution-processible conjugated polymers for organic solar cells and field-effect transistors. Chem. Mater. 26, 604 (2014).

    CAS  Google Scholar 

  32. T.C. Parker, D.G. Patel, K. Moudgil, S. Barlow, C. Risko, J.-L. Bredas, J.R. Reynolds, and S.R. Marder: Heteroannulated acceptors based on benzothiadiazole. Mater. Horiz. 2, 22 (2015).

    CAS  Google Scholar 

  33. M.J. Robb, S.-Y. Ku, F.G. Brunetti, and C.J. Hawker: A renaissance of color: new structures and building blocks for organic electronics. J. Polym. Sci., A: Polym. Chem. 51, 1263 (2013).

    CAS  Google Scholar 

  34. Z. Liu, G. Zhang, Z. Cai, X. Chen, H. Luo, Y. Li, J. Wang, and D. Zhang: New organic semiconductors with imide/amide-containing molecular systems. Adv. Mater. 26, 6965 (2014).

    CAS  Google Scholar 

  35. X. Guo, A. Facchetti, and T.J. Marks: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943 (2014).

    CAS  Google Scholar 

  36. H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, and W. You: Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995 (2011).

    CAS  Google Scholar 

  37. H.J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li, and L. Yu: Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 1885 (2011).

    CAS  Google Scholar 

  38. U. Scherf: Conjugated ladder-type structures. In Handbook of Conjugated Polymers, edited by T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds (CRC Press, Boca Raton, 1998), 363–379.

    Google Scholar 

  39. A. Babel and S.A. Jenekhe: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656 (2003).

    CAS  Google Scholar 

  40. T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.-H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, A.G. Rinzler, S. Barlow, J.-L. Brédas, B. Kippelen, S.R. Marder, and J.R. Reynolds: A spray-processable, low bandgap, and ambipolar donor−acceptor conjugated polymer. J. Am. Chem. Soc. 131, 2824 (2009).

    CAS  Google Scholar 

  41. H.A.M. van Mullekom, J.A.J.M. Vekemans, E.E. Havinga, and E.W. Meijer: Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater. Sci. Eng. R: Rep. 32, 1 (2001).

    Google Scholar 

  42. T.M. Burke and M.D. McGehee: How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26, 1923 (2014).

    CAS  Google Scholar 

  43. S. Sweetnam, K.R. Graham, G.O. Ngongang Ndjawa, T. Heumüller, J.A. Bartelt, T.M. Burke, W. Li, W. You, A. Amassian, and M.D. McGehee: Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078 (2014).

    CAS  Google Scholar 

  44. L.J. Richter, D.M. DeLongchamp, F.A. Bokel, S. Engmann, K.W. Chou, A. Amassian, E. Schaible, and A. Hexemer: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5 (2015).

  45. M. Abdelsamie, K. Zhao, M.R. Niazi, K.W. Chou, and A. Amassian: In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. J. Mater. Chem. 2, 3373 (2014).

    CAS  Google Scholar 

  46. J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, and M.F. Toney: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).

    CAS  Google Scholar 

  47. R.J. Kline: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312 (2005).

    CAS  Google Scholar 

  48. A.A.Y. Guilbert, J.M. Frost, T. Agostinelli, E. Pires, S. Lilliu, J.E. Macdonald, and J. Nelson: Influence of bridging atom and side chains on the structure and crystallinity of cyclopentadithiophene–benzothiadiazole polymers. Chem. Mater. 26, 1226 (2013).

    Google Scholar 

  49. J.K. Park, J. Jo, J.H. Seo, J.S. Moon, Y.D. Park, K. Lee, A.J. Heeger, and G.C. Bazan: End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells. Adv. Mater. 23, 2430 (2011).

    CAS  Google Scholar 

  50. S. Kouijzer, J.J. Michels, M. van den Berg, V.S. Gevaerts, M. Turbiez, M.M. Wienk, and R.A.J. Janssen: Predicting morphologies of solution processed polymer:fullerene blends. J. Am. Chem. Soc. 135, 12057 (2013).

    CAS  Google Scholar 

  51. P.M. Beaujuge, H.N. Tsao, M.R. Hansen, C.M. Amb, C. Risko, J. Subbiah, K.R. Choudhury, A. Mavrinskiy, W. Pisula, J.-L. Brédas, F. So, K. Müllen, and J.R. Reynolds: Synthetic principles directing charge transport in low-band-gap dithienosilole–benzothiadiazole copolymers. J. Am. Chem. Soc. 134, 8944 (2012).

    CAS  Google Scholar 

  52. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, and K. Müllen: Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24, 417 (2012).

    CAS  Google Scholar 

  53. T. Lei, Y. Cao, X. Zhou, Y. Peng, J. Bian, and J. Pei: Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 24, 1762 (2012).

    CAS  Google Scholar 

  54. K.R. Graham, C. Cabanetos, J.P. Jahnke, M.N. Idso, A. El Labban, G.O. Ngongang Ndjawa, T. Heumueller, K. Vandewal, A. Salleo, B.F. Chmelka, A. Amassian, P.M. Beaujuge, and M.D. McGehee: Importance of the donor: fullerene intermolecular arrangement for highefficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608 (2014).

    CAS  Google Scholar 

  55. H.N. Tsao, D.M. Cho, I. Park, M.R. Hansen, A. Mavrinskiy, D.Y. Yoon, R. Graf, W. Pisula, H.W. Spiess, and K. Müllen: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605 (2011).

    CAS  Google Scholar 

  56. N. Shin, L.J. Richter, A.A. Herzing, R.J. Kline, and D.M. DeLongchamp: Effect of processing additives on the solidification of blade-coated polymer/ fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 3, 938 (2013).

    CAS  Google Scholar 

  57. L.A. Perez, K.W. Chou, J.A. Love, T.S. van der Poll, D.-M. Smilgies, T.-Q. Nguyen, E.J. Kramer, A. Amassian, and G.C. Bazan: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380 (2013).

    CAS  Google Scholar 

  58. K.W. Chou, B. Yan, R. Li, E.Q. Li, K. Zhao, D.H. Anjum, S. Alvarez, R. Gassaway, A. Biocca, S.T. Thoroddsen, A. Hexemer, and A. Amassian: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923 (2013).

    CAS  Google Scholar 

  59. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, and G.C. Bazan: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007).

    CAS  Google Scholar 

  60. J. Peet, N.S. Cho, S.K. Lee, and G.C. Bazan: Transition from solution to the solid state in polymer solar cells cast from mixed solvents. Macromolecules 41, 8655 (2008).

    CAS  Google Scholar 

  61. Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114, 7006 (2014).

    CAS  Google Scholar 

  62. Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang: Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783 (2008).

    CAS  Google Scholar 

  63. J.T. Rogers, K. Schmidt, M.F. Toney, G.C. Bazan, and E.J. Kramer: Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134, 2884 (2012).

    CAS  Google Scholar 

  64. K. Schmidt, C.J. Tassone, J.R. Niskala, A.T. Yiu, O.P. Lee, T.M. Weiss, C. Wang, J.M.J. Fréchet, P.M. Beaujuge, and M.F. Toney: A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. Adv. Mater. 26, 300 (2014).

    CAS  Google Scholar 

  65. S.J. Lou, J.M. Szarko, T. Xu, L. Yu, T.J. Marks, and L.X. Chen: Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J. Am. Chem. Soc. 133, 20661 (2011).

    CAS  Google Scholar 

  66. J. Gao, W. Chen, L. Dou, C.-C. Chen, W.-H. Chang, Y. Liu, G. Li, and Y. Yang: Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv. Mater. 26, 3142 (2014).

    CAS  Google Scholar 

  67. H. Yan, L. Zhu, D. Li, Y. Zhang, Y. Yi, Y. Yang, Z. Wei, and J.-L. Brédas: Rationalization of the selectivity in the optimization of processing conditions for high-performance polymer solar cells based on the polymer self-assembly ability. J. Phys. Chem. 118, 29473 (2014).

    CAS  Google Scholar 

  68. M.T. Dang, L. Hirsch, and G. Wantz: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597 (2011).

    CAS  Google Scholar 

  69. K.H. Hendriks, W. Li, G.H.L. Heintges, G.W.P. van Pruissen, M.M. Wienk, and R.A.J. Janssen: Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc. 136, 11128 (2014).

    CAS  Google Scholar 

  70. E. Zimmermann, P. Ehrenreich, T. Pfadler, J.A. Dorman, J. Weickert, and L. Schmidt-Mende: Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669 (2014).

    CAS  Google Scholar 

  71. E.J. Luber and J.M. Buriak: Reporting performance in organic photovoltaic devices. ACS Nano 7, 4708 (2013).

    CAS  Google Scholar 

  72. F.C. Krebs, S.A. Gevorgyan, and J. Alstrup: A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442 (2009).

    CAS  Google Scholar 

  73. F. Machui, L. Lucera, G.D. Spyropoulos, J. Cordero, A.S. Ali, P. Kubis, T. Ameri, M.M. Voigt, and C.J. Brabec: Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations. Sol. Energy Mater. Sol. Cells 128, 441 (2014).

    CAS  Google Scholar 

  74. A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, M. Morana, C.J. Brabec, and U.S. Schubert: Combinatorial screening of polymer:fullerene blends for organic solar cells by inkjet printing. Adv. Energy Mater. 1, 105 (2011).

    CAS  Google Scholar 

  75. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo: Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3 (2010).

    CAS  Google Scholar 

  76. H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, and P. Meredith: Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572 (2012).

    CAS  Google Scholar 

  77. K. Xiong, L. Hou, M. Wu, Y. Huo, W. Mo, Y. Yuan, S. Sun, W. Xu, and E. Wang: From spin coating to doctor blading: a systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 132, 252 (2015).

    CAS  Google Scholar 

  78. G. Giri, E. Verploegen, S.C.B. Mannsfeld, S. Atahan-Evrenk, D.H. Kim, S.Y. Lee, H.A. Becerril, A. Aspuru-Guzik, M.F. Toney, and Z. Bao: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504 (2011).

    CAS  Google Scholar 

  79. Y. Yao, H. Dong, and W. Hu: Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197 (2013).

    CAS  Google Scholar 

  80. S.-L. Lim, E.-C. Chen, C.-Y. Chen, K.-H. Ong, Z.-K. Chen, and H.-F. Meng: High performance organic photovoltaic cells with bladecoated active layers. Sol. Energy Mater. Sol. Cells 107, 292 (2012).

    CAS  Google Scholar 

  81. R. Søndergaard, M. Manceau, M. Jørgensen, and F.C. Krebs: New lowbandgap materials with good stabilities and efficiencies comparable to P3HT in R2R-coated solar cells. Adv. Energ. Mater. 2, 415 (2012).

    Google Scholar 

  82. A. Abdellah, K.S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa: Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics. Adv. Funct. Mater. 22, 4078 (2012).

    CAS  Google Scholar 

  83. D.G. Patel, K.R. Graham, and J.R. Reynolds: A Diels-Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. J. Mater. Chem. 22, 3004 (2012).

    CAS  Google Scholar 

  84. N. Li, P. Kubis, K. Forberich, T. Ameri, F.C. Krebs, and C.J. Brabec: Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing. Sol. Energy Mater. Sol. Cells 120, 701 (2014).

    CAS  Google Scholar 

  85. T.R. Andersen, H.F. Dam, M. Hosel, M. Helgesen, J.E. Carle, T.T. Larsen-Olsen, S.A. Gevorgyan, J.W. Andreasen, J. Adams, N. Li, F. Machui, G.D. Spyropoulos, T. Ameri, N. Lemaitre, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O.R. Lozman, S. Nordman, M. Valimaki, M. Vilkman, R.R. Sondergaard, M. Jorgensen, C.J. Brabec, and F.C. Krebs: Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 7, 2925 (2014).

    CAS  Google Scholar 

  86. G.D. Spyropoulos, P. Kubis, N. Li, D. Baran, L. Lucera, M. Salvador, T. Ameri, M.M. Voigt, F.C. Krebs, and C.J. Brabec: Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284 (2014).

    CAS  Google Scholar 

  87. Y. Lin and X. Zhan: Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1, 470 (2014).

    CAS  Google Scholar 

  88. T.V. Pho, F.M. Toma, B.J. Tremolet de Villers, S. Wang, N.D. Treat, N.D. Eisenmenger, G.M. Su, R.C. Coffin, J.D. Douglas, J.M.J. Fréchet, G.C. Bazan, F. Wudl, and M.L. Chabinyc: Decacyclene triimides: paving the road to universal non-fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 4, (2014).

  89. T. Liu and A. Troisi: What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv. Mater 25, 1038 (2013).

    CAS  Google Scholar 

  90. H. Li, T. Earmme, G. Ren, A. Saeki, S. Yoshikawa, N.M. Murari, S. Subramaniyan, M.J. Crane, S. Seki, and S.A. Jenekhe: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589 (2014).

    CAS  Google Scholar 

  91. J.T. Bloking, T. Giovenzana, A.T. Higgs, A.J. Ponec, E.T. Hoke, K. Vandewal, S. Ko, Z. Bao, A. Sellinger, and M.D. McGehee: Comparing the device physics and morphology of polymer solar cells employing fullerenes and non-fullerene acceptors. Adv. Energy Mater. 4, (2014).

  92. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R.H. Friend: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340 (2012).

    CAS  Google Scholar 

  93. T. Earmme, Y.-J. Hwang, N.M. Murari, S. Subramaniyan, and S.A. Jenekhe: All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960 (2013).

    CAS  Google Scholar 

  94. D. Mori, H. Benten, H. Ohkita, S. Ito, and K. Miyake: Polymer/polymer blend solar cells improved by using high-molecular-weight fluorenebased copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, 3325 (2012).

    CAS  Google Scholar 

  95. T. Earmme, Y.-J. Hwang, S. Subramaniyan, and S.A. Jenekhe: All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Adv. Mater. 26, 6080 (2014).

    CAS  Google Scholar 

  96. E. Zhou, J. Cong, K. Hashimoto, and K. Tajima: Control of miscibility and aggregation via the material design and coating process for highperformance polymer blend solar cells. Adv. Mater. 25, 6991 (2013).

    CAS  Google Scholar 

  97. W. Li, W.S.C. Roelofs, M. Turbiez, M.M. Wienk, and R.A.J. Janssen: Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor. Adv. Mater. 26, 3304 (2014).

    CAS  Google Scholar 

  98. E. Pavlopoulou, C.S. Kim, S.S. Lee, Z. Chen, A. Facchetti, M.F. Toney, and Y.-L. Loo: Tuning the morphology of all-polymer OPVs through altering polymer–solvent interactions. Chem. Mater. 26, 5020 (2014).

    CAS  Google Scholar 

  99. M.J. Robb, S.-Y. Ku, and C.J. Hawker: 25th anniversary article: no assembly required: recent advances in fully conjugated block copolymers. Adv. Mater. 25, 5686 (2013).

    CAS  Google Scholar 

  100. L. Lucera, P. Kubis, F.W. Fecher, C. Bronnbauer, M. Turbiez, K. Forberich, T. Ameri, H.-J. Egelhaaf, and C.J. Brabec: Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technol. 3, 373 (2015).

    Google Scholar 

  101. D. Angmo, P.M. Sommeling, R. Gupta, M. Hösel, S.A. Gevorgyan, J.M. Kroon, G.U. Kulkarni, and F.C. Krebs: Outdoor operational stability of indium-free flexible polymer solar modules over 1 year studied in India, Holland, and Denmark. Adv. Eng. Mater. 16, 976 (2014).

    CAS  Google Scholar 

  102. I.T. Sachs-Quintana, T. Heumüller, W.R. Mateker, D.E. Orozco, R. Cheacharoen, S. Sweetnam, C.J. Brabec, and M.D. McGehee: Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv. Funct. Mater. 24, 3978 (2014).

    CAS  Google Scholar 

  103. M. Vosgueritchian, D.J. Lipomi, and Z. Bao: Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421 (2012).

    CAS  Google Scholar 

  104. E. Puodziukynaite, H.-W. Wang, J. Lawrence, A.J. Wise, T.P. Russell, M.D. Barnes, and T. Emrick: Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. J. Am. Chem. Soc. 136, 11043 (2014).

    CAS  Google Scholar 

  105. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, and B. Kippelen: A Universal method to produce low–work function electrodes for organic electronics. Science 336, 327 (2012).

    CAS  Google Scholar 

  106. Imec Demonstrates Organic Photovoltaics Modules Showing Excellent Optical Properties and High Efficiencies. http://www2.imec.be/be_en/press/imec-news/imec-organic-solar-modules-photovoltaics.html.

Download references

Acknowledgments

This publication is based on the work supported in part by Grant No. N00014-14-1-0173 from the Office of Naval Research. The authors thank Dr. Bernard Kippelen for helpful discussions during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grand, C., Reynolds, J.R. The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules. MRS Communications 5, 155–167 (2015). https://doi.org/10.1557/mrc.2015.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.24

Navigation