Skip to main content

High-Performance Bulk-Heterojunction Polymer Solar Cells

  • Chapter
  • First Online:
Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

  • 1675 Accesses

Abstract

Most of the high-efficiency organic photovoltaic devices (OPVs) reported to date have been fabricated based on the concept of a bulk heterojunction, where a conjugated polymer (donor) and a soluble fullerene (acceptor) form an interpenetrating network featuring a large donor–acceptor interfacial area. In this chapter, we first introduce the fundamentals of OPVs and then review the recent progress related to OPVs based on conjugated polymers. We then discuss the annealing approaches that have been used to optimize the morphologies of the photoactive layers, including thermal annealing and solvent annealing, and describe the engineering of the interfaces at the contacts between the polymer blends and the metal electrodes. Next, we outline the two most common optical methods for improving the light absorption efficiency of OPVs: the use of optical spacers and the triggering of surface plasmons. Finally, we summarize the development of low-band-gap polymers for the absorption of long-wavelength photons from solar irradiation and provide a brief outlook of the future use of OPVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) Nature 459:234

    Article  Google Scholar 

  2. Street RA (2009) Adv Mater 21:2007

    Article  Google Scholar 

  3. Capelli R, Toffanin S, Generali G, Usta H, Facchetti A, Muccini M (2010) Nat Mater 9:496

    Article  Google Scholar 

  4. Clark J, Lanzani G (2010) Nat Photonics 4:438

    Article  Google Scholar 

  5. R. F. Service (2011) Science 332:293

    Article  Google Scholar 

  6. Kippelen B, Bredas J-L (2009) Energy Environ Sci 2:251

    Article  Google Scholar 

  7. Bredas J-L, Norton JE, Cornil J, Coropceanu V (2009) Acc Chem Res 42:1691

    Article  Google Scholar 

  8. Li G, Zhu R, Yang Y (2012) Nat Photonics 6:153

    Article  MATH  MathSciNet  Google Scholar 

  9. Roes AL, Alsema EA, Blok K, Patel MK (2009) Prog Photovoltaics Res Appl 17:372

    Article  Google Scholar 

  10. Moliton A, Nunzi JM (2006) Polym Int 55:583

    Article  Google Scholar 

  11. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  Google Scholar 

  12. Chen FC, Lin YK, Ko CJ (2008) Appl Phys Lett 92:023307

    Article  Google Scholar 

  13. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193

    Article  Google Scholar 

  14. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617

    Article  Google Scholar 

  15. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  Google Scholar 

  16. Chen FC, Ko CJ, Wu JL, Chen WC (2010) Sol Energy Mater Sol Cells 94:2426

    Article  Google Scholar 

  17. Jin SH, Naidu BVK, Jeon HS, Park SM, Park JS, Km SC, Lee JW, Gal YS (2007) Sol Energy Mater Sol Cells 91:1187

    Article  Google Scholar 

  18. Moule AJ, Meerholz K (2008) Adv Mater 20:240

    Article  Google Scholar 

  19. Chen FC, Tseng HC, Ko CJ (2008) Appl Phys Lett 92:103316

    Article  Google Scholar 

  20. Ko CJ, Lin YK, Chen FC (2007) Adv Mater 19:3520

    Article  Google Scholar 

  21. Yip HL, Jen AKY (2012) Energy Environ Sci 5:5994

    Article  Google Scholar 

  22. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) ACS Nano 4:3169

    Article  Google Scholar 

  23. Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Appl Phys Lett 80:1288

    Article  Google Scholar 

  24. Jiang X, Xu H, Yang L, Shi M, Wang M, Chen H (2009) Sol Energy Mater Sol Cells 93:650

    Article  Google Scholar 

  25. Chen FC, Wu JL, Yang SS, Hsieh KH, Chen WC (2008) J Appl Phys 103:103721

    Article  Google Scholar 

  26. Yip HL, Hau SK, Baek NS, Jen AKY (2008) Appl Phys Lett 92:193313

    Article  Google Scholar 

  27. Zhang F, Ceder M, Inganäs O (2007) Adv Mater 19:1835

    Article  Google Scholar 

  28. Chen FC, Chien SC (2009) J Mater Chem 19:6865

    Article  Google Scholar 

  29. Chien SC, Chen FC, Chung MK, Hsu CS (2012) J Phys Chem C 116:1354

    Article  Google Scholar 

  30. Zhou YH, Zhang FL, Tvingstedt K, Tian WJ, Inganäs O (2008) Appl Phys Lett 93:033302

    Article  Google Scholar 

  31. Tvingstedt K, Andersson V, Zhang F, Inganas O (2007) Appl Phys Lett 91:123514

    Article  Google Scholar 

  32. Tvingstedt K, Zilio SD, Inganäs O, Tormen M (2008) Opt Express 16:21608

    Article  Google Scholar 

  33. Forberich J, Dennler G, Scharber MC, Hingerl K, Fromherz T, Braber CJ (2008) Thin Solid Films 516:7167

    Article  Google Scholar 

  34. Peumans P, Bulovic V, Forrest SR (2000) Appl Phys Lett 76:2650

    Article  Google Scholar 

  35. Tumbleston JR, Ko DH, Samulski ET, Lopez R (2009) Opt Express 17:7670

    Article  Google Scholar 

  36. Ko DH, Tumbleston JR, Zhang L, Williams S, DeSimone JM, Lopez R, Samulski ET (2009) Nano Lett 9:2742

    Article  Google Scholar 

  37. Kang MG, Xu T, Park HJ, Luo XG, Guo LJ (2010) Adv Mater 22:4378

    Article  Google Scholar 

  38. Lindquist NC, Luhman WA, Oh SH, Holmes RJ (2008) Appl Phys Lett 93:123308

    Article  Google Scholar 

  39. Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ (2006) Adv Mater 18:572

    Article  Google Scholar 

  40. Gilot J, Barbu I, Wienk MM, Janssen RAJ (2007) Appl Phys Lett 91:113520

    Article  Google Scholar 

  41. Chen FC, Wu JL, Hong Y (2010) Appl Phys Lett 96:193304

    Article  Google Scholar 

  42. Andersson BV, Huang DM, Moulé AJ, Inganäs O (2009) Appl Phys Lett 94:043302

    Article  Google Scholar 

  43. Maier SA, Atwater HA (2005) J Appl Phys 98:011101

    Article  Google Scholar 

  44. Atwater HA, Polman A (2010) Nat Mater 9:205

    Article  Google Scholar 

  45. Ferry VE, Munday JN, Atwater HA (2010) Adv Mater 22:4794

    Article  Google Scholar 

  46. Kim SS, Na SI, Jo J, Kim DY, Nah YC (2008) Appl Phys Lett 93:073307

    Article  Google Scholar 

  47. Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, van de Lagemaat J (2008) Appl Phys Lett 92:013504

    Article  Google Scholar 

  48. Chen FC, Wu JL, Lee CL, Hong Y, Kuo CH, Huang MH (2009) Appl Phys Lett 95:013305

    Article  Google Scholar 

  49. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS (2011) ACS Nano 5:959

    Article  Google Scholar 

  50. Kim K, Carroll DL (2005) Appl Phys Lett 87:203113

    Article  Google Scholar 

  51. Xue M, Li L, Tremolet de Villers BJ, Shen H, Zhu J, Yu Z, Stieg AZ, Pei Q, Schwartz BJ, Wang KL (2011) Appl Phys Lett 98:253302

    Article  Google Scholar 

  52. Sha WEI, Choy WCH, Liu YG, Chew WC (2011) Appl Phys Lett 99:113304

    Article  Google Scholar 

  53. Tvingstedt K, Persson NK, Inganas O, Rahachou A, Zozoulenko IV (2007) Appl Phys Lett 91:113514

    Article  Google Scholar 

  54. Li X, Choy WCH, Hou L, Xie F, Sha WEI, Ding B, Guo X, Li Y, Hou J, You J, Yang Y (2012) Adv Mater 22:3046

    Article  Google Scholar 

  55. Sefunc MA, Okyay AK, Demir HV (2011) Opt Express 19:14200

    Article  Google Scholar 

  56. Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954

    Article  Google Scholar 

  57. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18:789

    Article  Google Scholar 

  58. Liang Y, Feng D, Wu Y, Tsai ST, Li G, Ray C, Yu L (2009) J Am Chem Soc 131:7792

    Article  Google Scholar 

  59. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) Adv Mater 22:E135

    Article  Google Scholar 

  60. Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Nat Photonics 3:649

    Article  Google Scholar 

  61. Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J (2011) Angew Chem Int Ed 50:9697

    Article  Google Scholar 

  62. Dennler G, Scharber MC, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2008) Adv Mater 20:579

    Article  Google Scholar 

  63. Janssen RAJ, Nelson J (2013) Adv Mater 25:1847. DOI: 10.1002/adma.201202873

Download references

Acknowledgment

We thank the National Science Council of Taiwan and the Ministry of Education of Taiwan (through the ATU program) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Chung Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chen, FC., Chou, CH., Chuang, MK. (2014). High-Performance Bulk-Heterojunction Polymer Solar Cells. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics