Skip to main content

Advertisement

Log in

Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

As multifunctional electroactive materials, ferroelectric polymers are unique owing to their exceptionally high dielectric strength (>600 MV/m), high flexibility, and easy and low-temperature fabrication into required shapes. Although polyvinylidene difluoride (PVDF)-based ferroelectric polymers have been known for several decades, recent findings reveal the potential of this class of electroactive polymers (EAPs) to achieve giant electroactive responses by tuning the molecular, nano, and meso-structures. This paper presents these advances, including giant electrocaloric effect, giant electroactuation, and large, hysteresis-free polarization response. New developments in materials benefit applications, such as environmentally benign and potentially highly energy-efficient electrical field controlled solid-state refrigeration, artificial muscles, and high-energy and power density electric energy storage devices. The challenges in developing these materials to realize these applications, and strategies to further improve the responses of EAPs will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. J. Valasek: Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475 (1921).

    CAS  Google Scholar 

  2. M. Lines and A. Glass: Principles and Applications of Ferroelectrics and Related Materials (Larendon, Oxford, 1977).

    Google Scholar 

  3. H. Kawai: Piezoelectricity of poly (vinylidene fluoride). Japan. J. Appl. Phys. 8, 975 (1969).

    CAS  Google Scholar 

  4. T.T. Wang, J.M. Herbert, and A.M. Glass: The Applications of Ferroelectric Polymers (Blackie; Chapman and Hall, Glasgow, New York, 1988).

    Google Scholar 

  5. G.M. Sessler: Electrets (Laplacian Press, Morgan Hill, CA., 1998).

    Google Scholar 

  6. Y. Xu: Ferroelectric Materials and their Applications (North-Holland; Sole distributors for the USA and Canada, Elsevier Science Pub. Co., Amsterdam, New York, NY, 1991).

    Google Scholar 

  7. A. Ambrosy and K. Holdik: Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E-Sci. Instrum. 17, 856 (1984).

    CAS  Google Scholar 

  8. V. Bhavanasi, D.Y. Kusuma, and P.S. Lee: Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF–TrFE nanotubes synthesized by nanoconfinement. Adv. Energy Mater. 4, 8 (2014).

    Google Scholar 

  9. R.B. Olsen, D.A. Bruno, and J.M. Briscoe: Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709 (1985).

    CAS  Google Scholar 

  10. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J.A. Rogers: High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluorideco-trifluoroethylene). Nat. Commun. 4, 1633 (2013).

    Google Scholar 

  11. S.P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, and R.W. Whatmore: Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39, 1099 (2014).

    CAS  Google Scholar 

  12. R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, and B. de Boer: Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010).

    CAS  Google Scholar 

  13. A.J. Lovinger: Ferroelectric polymers. Scienc. 220, 1115 (1983).

    CAS  Google Scholar 

  14. B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, and Q.M. Zhang: Large electrocaloric effect in ferroelectric polymers near room temperature. Scienc. 321, 821 (2008).

    CAS  Google Scholar 

  15. S.-G. Lu and Q. Zhang: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983 (2009).

    CAS  Google Scholar 

  16. X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-S. Qian, and Q.M. Zhang: Pyroelectric and electrocaloric materials. J. Mater. Chem. 1, 23 (2013).

    CAS  Google Scholar 

  17. Z. Cheng and Q. Zhang: Field-activated electroactive polymers. MRS Bull. 33, 183 (2008).

    CAS  Google Scholar 

  18. W.J. Sarjeant, J. Zirnheld, and F.W. MacDougall: Capacitors. IEEE Trans. Plasma Sci. 26, 1368 (1998).

    CAS  Google Scholar 

  19. M. Rabuffi and G. Picci: Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939 (2002).

    CAS  Google Scholar 

  20. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, and Q.M. Zhang: A dielectric polymer with high electric energy density and fast discharge speed. Scienc. 313, 334 (2006).

    CAS  Google Scholar 

  21. X. Zhou, Q. Chen, Q.M. Zhang, and S. Zhang: Dielectric behavior of bilayer films of P(VDF-CTFE) and low temperature PECVD fabricated Si3N4. IEEE Trans. Dielectr. Electr. Insul. 18, 463 (2011).

    CAS  Google Scholar 

  22. Q.M. Zhang, J.G. Brisson II, J. Joe Smith, P. Calvert, F. Bauer, and G. Knowles: Relaxor ferroelectric polymer based electrotextile for thermal management of soldiers with protective gears, (Proposal Submitted to DARPA BAA 04-12 Addendum 7, 2004) http://www.ee.psu.edu/Directory/FacultyInfo/Zhang/ProposaldarpaSMFMNov1104%20-ECEPart. pdf

    Google Scholar 

  23. X. Li, X.-S. Qian, S.G. Lu, J. Cheng, Z. Fang, and Q.M. Zhang: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).

    Google Scholar 

  24. B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, and Z.D. Zhang: Intrinsic electrocaloric effects in ferroelectric poly(vinylidene fluoride–trifluoroethylene) copolymers: roles of order of phase transition and stresses. Appl. Phys. Lett. 96, 102903 (2010).

    Google Scholar 

  25. P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil, and J.H. Chu: Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010).

    Google Scholar 

  26. B. Rozic, Z. Kutnjak, B. Neese, S.-G. Lu, and Q.M. Zhang: Electrocaloric effect in the relaxor ferroelectric polymer composition P(VDF-TrFE-CFE) 0.90-P(VDF-CTFE)0.10. Phase Transit. 83, 819 (2010).

    CAS  Google Scholar 

  27. S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, and B. Neese: Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).

    Google Scholar 

  28. A.A. Skripkin, A.A. Solopov, A.V. Lyashenko, and A.A. Ignatyev: High Frequency Air-cooling Radiator has Housing which has Input Portion that is made in Form of Venturi Nozzle, and has Inner Surface with thin Film Electrocaloric Polymer (Tantal Stock Co; Inst Critical Technologies Stock Co; Univ Saratov) RU141660-U1.

  29. V. Basso, F. Russo, J.-F. Gerard, and S. Pruvost: Direct measurement of the electrocaloric effect in poly(vinylidene fluoride-trifluoroethylenechlorotrifluoroethylene) terpolymer films. Appl. Phys. Lett. 103, 202904 (2013).

    Google Scholar 

  30. Y. Jia, and Y.S. Ju: Direct characterization of the electrocaloric effects in thin films supported on substrates. Appl. Phys. Lett. 103, 042903 (2013).

    Google Scholar 

  31. R.L. Moreira: Electrocaloric effect in gamma-irradiated P(VDF–TrFE) copolymers with relaxor features. Ferroelectric. 446, 1 (2013).

    CAS  Google Scholar 

  32. D. Guo, J. Gao, Y.-J. Yu, S. Santhanam, G.K. Fedder, A.J.H. McGaughey, and S.C. Yao: Electrocaloric characterization of a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging. Appl. Phys. Lett. 105, 031906 (2014).

    Google Scholar 

  33. Y. Jia, and Y.S. Ju: Characterization of the electrocaloric effect and hysteresis loss in relaxor ferroelectric thin films under alternating current bias fields. Appl. Phys. Lett. 104, 251913 (2014).

    Google Scholar 

  34. X. Li, X.-S. Qian, H. Gu, X. Chen, S.G. Lu, M. Lin, F. Bateman, and Q.M. Zhang: Giant electrocaloric effect in ferroelectric poly (vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).

    Google Scholar 

  35. R. Pirc, Z. Kutnjak, R. Blinc, and Q.M. Zhang: Electrocaloric effect in relaxor ferroelectrics. J. Appl. Phys. 110, 074113 (2011).

    Google Scholar 

  36. X. Li, X.-S. Qian, S.G. Lu, J. Cheng, Z. Fang, and Q.M. Zhang: Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99, 052907 (2011).

    Google Scholar 

  37. Z.K. Liu, X. Li, and Q.M. Zhang: Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 101, 082904 (2012).

    Google Scholar 

  38. X.-S. Qian, H.-J. Ye, Y.-T. Zhang, H. Gu, X. Li, C.A. Randall, and Q.M. Zhang: Giant electrocaloric response over a broad temperature range in modifi ed BaTiO 3 ceramics. Adv. Funct. Mater. 24, 1300 (2014).

    CAS  Google Scholar 

  39. H.-J. Ye, X.-S. Qian, D.-Y. Jeong, S. Zhang, Y. Zhou, W.-Z. Shao, L. Zhen, and Q.M. Zhang: Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett. 105, 152908 (2014).

    Google Scholar 

  40. X.-Z. Chen, X. Li, X.-S. Qian, M. Lin, S. Wu, Q.-D. Shen, and Q.M. Zhang: A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polyme. 54, 5299 (2013).

    CAS  Google Scholar 

  41. G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q. Zhang, and Q. Wang: Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015).

    CAS  Google Scholar 

  42. H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S.C. Yao, and Q.M. Zhang: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).

    Google Scholar 

  43. H. Gu, X.-S. Qian, H.-J. Ye, and Q.M. Zhang: An electrocaloric refrigerator without external regenerator. Appl. Phys. Lett. 105, 162905 (2014).

    Google Scholar 

  44. X.-Z. Chen, X.-S. Qian, X. Li, S.G. Lu, H.-m Gu, M. Lin, Q.-d Shen, and Q.M. Zhang: Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Appl. Phys. Lett. 100, 222902 (2012).

    Google Scholar 

  45. X.-Z. Chen, X. Li, X.-S. Qian, S. Wu, S.-G. Lu, H.-M. Gu, M. Lin, Q.-D. Shen, and Q.M. Zhang: A polymer blend approach to tailor the ferroelectric responses in P(VDF-TrFE) based copolymers. Polyme. 54, 2373 (2013).

    CAS  Google Scholar 

  46. H. Gu, X. Li, S.G. Lu, M. Lin, X. Qian, J.P. Cheng, Q.M. Zhang, A. Cheng and B. Craven: Compact cooling devices based on giant electrocaloric effect dielectrics. In Proceedings of the Asme Summer Heat Transfer Conference, 2012, Vol 2, 2012, p. 635.

    Google Scholar 

  47. H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S.C. Yao, and Q.M. Zhang: A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).

    Google Scholar 

  48. H. Gu, B. Craven, X. Qian, X. Li, A. Cheng, and Q.M. Zhang: Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Appl. Phys. Lett. 102, 112901 (2013).

    Google Scholar 

  49. U. Plaznik, A. Kitanovski, B. Rozic, B. Malic, H. Ursic, S. Drnovsek, J. Cilensek, M. Vrabelj, A. Poredos, and Z. Kutnjak: Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett. 106, 043903 (2015).

    Google Scholar 

  50. R. Chukka, S. Shannigrahi, and L. Chen: Investigations of cooling efficiencies in solid-state electrocaloric device. Integr. Ferroelectr. 133, 3 (2012).

    Google Scholar 

  51. Y.V. Sinyavsky and V.M. Brodyansky: Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectric. 131, 321 (1992).

    CAS  Google Scholar 

  52. Y. Jia and Y. Sungtaek: A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).

    Google Scholar 

  53. S.F. Karmanenko, O.V. Pakhomov, A.M. Prudan, A.S. Starkov, and A. Eskov: Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line. J. Eur. Ceram. Soc. 27, 3109 (2007).

    CAS  Google Scholar 

  54. M. Ozbolt, A. Kitanovski, J. Tusek, and A. Poredos: Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int. J. Refrig.–Rev. Int. Froi. 40, 174 (2014).

    Google Scholar 

  55. D. Guo, J. Gao, Y.-J. Yu, S. Santhanam, A. Slippey, G.K. Fedder, A.J.H. McGaughey, and S.-C. Yao: Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int. J. Heat Mass Transfe. 72, 559 (2014).

    CAS  Google Scholar 

  56. R.B. Olsen and D.D. Brown: High-efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectric. 40, 17 (1982).

    CAS  Google Scholar 

  57. Y.V. Sinyavsky, N.D. Pashkov, Y.M. Gorovoy, and G.E. Lugansky: The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectric. 90, 213 (1989).

    Google Scholar 

  58. X.-S. Qian, S.-G. Lu, X. Li, H. Gu, L.-C. Chien, and Q. Zhang: Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Adv. Funct. Mater. 23, 2894 (2013).

    CAS  Google Scholar 

  59. L. Zhu: Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677 (2014).

    CAS  Google Scholar 

  60. Y. Liu, J. Wei, P.-E. Janolin, I.C. Infante, X. Lou, and B. Dkhil: Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal. Appl. Phys. Lett. 104, 162904 (2014).

    Google Scholar 

  61. M. Redmond, K. Manickaraj, O. Sullivan, S. Mukhopadhyay, and S. Kumar: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 759 (2013).

    Google Scholar 

  62. J.D. Jordan and J.R. Carhuapoma: Hypothermia: comparing technology. J. Neurol. Sci. 261, 35 (2007).

    Google Scholar 

  63. A.J. Lovinger, T. Furukawa, G.T. Davis, and M.G. Broadhurst: Curie transitions in copolymers of vinylidene fluoride. Ferroelectric. 50, 553 (1983).

    CAS  Google Scholar 

  64. A.J. Lovinger: Poly(Vinylidene Fluoride). In Developments in Crystalline Polymers, edited by D.C. Bassett (Applied Science Publishers, London, 1982), pp. 195–273.

    Google Scholar 

  65. C. Huang, R. Klein, F. Xia, H.F. Li, Q.M. Zhang, F. Bauer, and Z.Y. Cheng: Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. Ieee Trans. Dielectr. Electr. Insulat. 11, 299 (2004).

    Google Scholar 

  66. Q.M. Zhang, V. Bharti, and X. Zhao: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoridetrifluoroethylene) copolymer. Scienc. 280, 2101 (1998).

    CAS  Google Scholar 

  67. Z.Y. Cheng, T.B. Xu, V. Bharti, S.X. Wang, and Q.M. Zhang: Transverse strain responses in the electrostrictive poly(vinylidene fluoridetrifluorethylene) copolymer. Appl. Phys. Lett. 74, 1901 (1999).

    CAS  Google Scholar 

  68. S.S. Guo, X.Z. Zhao, Q.F. Zhou, H.L.W. Chan, and C.L. Choy: High electrostriction and relaxor ferroelectric behavior in proton-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Appl. Phys. Lett. 84, 3349 (2004).

    CAS  Google Scholar 

  69. F. Xia, Z.Y. Cheng, H.S. Xu, H.F. Li, Q.M. Zhang, G.J. Kavarnos, R.Y. Ting, G. Abdul-Sedat, and K.D. Belfield: High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574 (2002).

    CAS  Google Scholar 

  70. H.S. Xu, Z.Y. Cheng, D. Olson, T. Mai, Q.M. Zhang, and G. Kavarnos: Ferroelectric and electromechanical properties of poly (vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).

    CAS  Google Scholar 

  71. J.T. Garrett, C.M. Roland, A. Petchsuk, and T.C. Chung: Electrostrictive behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene). Appl. Phys. Lett. 83, 1190 (2003).

    CAS  Google Scholar 

  72. Z.Y. Cheng, Q.M. Zhang, and F.B. Bateman: Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: highenergy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymers. J. Appl. Phys. 92, 6749 (2002).

    CAS  Google Scholar 

  73. Z.Y. Cheng, D. Olson, H.S. Xu, F. Xia, J.S. Hundal, Q.M. Zhang, F.B. Bateman, G.J. Kavarnos, and T. Ramotowski: Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Macromolecule. 35, 664 (2002).

    CAS  Google Scholar 

  74. Z.M. Li, M.D. Arbatti, and Z.Y. Cheng: Recrystallization study of highenergy electron-irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecule. 37, 79 (2004).

    CAS  Google Scholar 

  75. Z.M. Li, S.Q. Li, and Z.Y. Cheng: Crystalline structure and transition behavior of recrystallized-irradiated P(VDF-TrFE) 65/35 copolymer. J. Appl. Phys. 97, 014102 (2005).

    Google Scholar 

  76. A.C. Jayasuriya, A. Schirokauer, and J.I. Scheinbeim: Crystal-structure dependence of electroactive properties in differently prepared poly(vinylidene fluoride/hexafluoropropylene) copolymer films. J. Polym. Sci. B–Polym. Phys. 39, 2793 (2001).

    CAS  Google Scholar 

  77. M. Wegener, W. Kunstler, K. Richter, and R. Gerhard-Multhaupt: Ferroelectric polarization in stretched piezo- and pyroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer films. J. Appl. Phys. 92, 7442 (2002).

    CAS  Google Scholar 

  78. B. Neese, Y. Wang, B. Chu, K. Ren, S. Liu, Q.M. Zhang, C. Huang, and J. West: Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. Appl. Phys. Lett. 90, 242917 (2007).

    Google Scholar 

  79. Z.M. Li, Y.H. Wang, and Z.Y. Cheng: Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 88, 062904 (2006).

    Google Scholar 

  80. R.J. Klein, F. Xia, Q.M. Zhang, and F. Bauer: Influence of composition on relaxor ferroelectric and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene). J. Appl. Phys. 97, 094105 (2005).

    Google Scholar 

  81. T.B. Xu, Z.Y. Cheng, and Q.M. Zhang: High-performance micromachined unimorph actuators based on electrostrictive poly(vinylidene fluoridetrifluoroethylene) copolymer. Appl. Phys. Lett. 80, 1082 (2002).

    CAS  Google Scholar 

  82. F. Xia, S. Tadigadapa, and Q.M. Zhang: Electroactive polymer based microfluidic pump. Sens. Actuators a–Phys. 125, 346 (2006).

    CAS  Google Scholar 

  83. S.T. Choi, J.Y. Lee, J.O. Kwon, S. Lee, and W. Kim: Varifocal liquid-filled microlens operated by an electroactive polymer actuator. Opt. Lett. 36, 1920 (2011).

    Google Scholar 

  84. S.T. Choi, J.O. Kwon, and F. Bauer: Multi layered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesionmediated film transfer technique. Sens. Actuators a–Phys. 203, 282 (2013).

    Google Scholar 

  85. J. Su, J. Harrison, T. St Clair, J.S. Harrison, and T.L. St Clair: Polymeric Piezoelectric Material (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200130875-A.

  86. J. Su, J. Harrison, T. St Clair, J.S. Harrison, and T.L. St Clair: Electromechanical Response Providing Device, has Active Web to Exhibit Electrostriction by Rotation of Polar Graft Moieties within Polymeric Web (Nasa Us Nat Aero & Space Admin; Nasa Us Nat Aero&Space Admin) WO200131172-A.

  87. T. Levard, P.J. Diglio, S.-G. Lu, C.D. Rahn, and Q.M. Zhang: Core-free rolled actuators for Braille displays using P(VDF–TrFE–CFE). Smart Mater. Struct. 21, 012001 (2012).

    Google Scholar 

  88. C. Huang and Q.M. Zhang: Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501 (2004).

    CAS  Google Scholar 

  89. S.H. Zhang, N.Y. Zhang, C. Huang, K.L. Ren, and Q.M. Zhang: Microstructure and electromechanical properties of carbon nanotube/ poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites. Adv. Mater. 17, 1897 (2005).

    CAS  Google Scholar 

  90. A. Javadi, Y. Xiao, W. Xu, and S. Gong: Chemically modified graphene/ P(VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22, 830 (2012).

    CAS  Google Scholar 

  91. R. Pelrine, R. Kornbluh, Q.B. Pei, and J. Joseph: High-speed electrically actuated elastomers with strain greater than 100%. Scienc. 287, 836 (2000).

    CAS  Google Scholar 

  92. M. Zhenyl, J.I. Scheinbeim, J.W. Lee, and B.A. Newman: High-field electrostrictive response of polymers. J. Polym. Sci. B–Polym. Phys. 32, 2721 (1994).

    Google Scholar 

  93. G. Kofod, P. Sommer-Larsen, R. Kronbluh, and R. Pelrine: Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787 (2003).

    CAS  Google Scholar 

  94. Z.M. Li and Z.Y. Cheng: Partially ordered region—a new mechanism for electromechanical response of EAPs. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices. Proceedings of SPI. 5759, 252 (2005).

    CAS  Google Scholar 

  95. X. Zhao and Z. Suo: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91, 061921 (2007).

    Google Scholar 

  96. G. Kofod, W. Wirges, M. Paajanen, and S. Bauer: Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 90, 081916 (2007).

    Google Scholar 

  97. Q.M. Zhang, H.F. Li, M. Poh, F. Xia, Z.Y. Cheng, H.S. Xu, and C. Huang: An all-organic composite actuator material with a high dielectric constant. Natur. 419, 284 (2002).

    CAS  Google Scholar 

  98. L. Zhu and Q. Wang: Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecule. 45, 2937 (2012).

    CAS  Google Scholar 

  99. S. Wu, M. Shao, Q. Burlingame, X. Chen, M. Lin, K. Xiao, and Q.M. Zhang: A high-K ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Appl. Phys. Lett. 102, 013301 (2013).

    Google Scholar 

  100. X. Zhou, X. Zhao, Z. Suo, C. Zou, J. Runt, S. Liu, S. Zhang, and Q.M. Zhang: Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl. Phys. Lett. 94, 162901 (2009).

    Google Scholar 

  101. D.C. Bassett: Developments in Crystalline Polymers—1 (Applied Science Publishers, London, 1982).

    Google Scholar 

  102. S. Wu, M. Lin, S.G. Lu, L. Zhu, and Q.M. Zhang: Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Appl. Phys. Lett. 99, 132901 (2011).

    Google Scholar 

  103. T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005).

    CAS  Google Scholar 

  104. T.J. Lewis: Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739 (2004).

    CAS  Google Scholar 

  105. Y. Rao and C.P. Wong: Material characterization of a high-dielectricconstant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92, 2228 (2004).

    CAS  Google Scholar 

  106. P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.-J. Pan, S.R. Marder, J. Li, J.P. Calame, and J.W. Perry: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nan. 3, 2581 (2009).

    CAS  Google Scholar 

  107. P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, and J.W. Perry: Phosphonic acid-modiried barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19, 1001 (2007).

    CAS  Google Scholar 

  108. T. Zhou, J.-W. Zha, R.-Y. Cui, B.-H. Fan, J.-K. Yuan, and Z.-M. Dang: Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interface. 3, 2184 (2011).

    CAS  Google Scholar 

  109. S. Liu, J. Zhai, J. Wang, S. Xue, and W. Zhang: Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interface. 6, 1533 (2014).

    CAS  Google Scholar 

  110. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith: Musselinspired surface chemistry for multifunctional coatings. Scienc. 318, 426 (2007).

    CAS  Google Scholar 

  111. Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, and C.-W. Nan: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22, 16491 (2012).

    CAS  Google Scholar 

  112. H. Tang, Y. Lin, and H.A. Sodano: Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2, 469 (2012).

    CAS  Google Scholar 

  113. Y.U. Wang and D.Q. Tan: Computational study of filler microstructure and effective property relations in dielectric composites. J. Appl. Phys. 109, 104102 (2011).

    Google Scholar 

  114. Y.U. Wang, D.Q. Tan, and J. Krahn: Computational study of dielectric composites with core–shell filler particles. J. Appl. Phys. 110, 044103 (2011).

    Google Scholar 

  115. V. Tomer and C.A. Randall: High field dielectric properties of anisotropic polymer–ceramic composites. J. Appl. Phys. 104, 074106 (2008).

    Google Scholar 

  116. S. Boggs: Analytical approach to breakdown under impulse conditions. IEEE Trans. Dielectr. Electr. Insul. 11, 90 (2004).

    Google Scholar 

  117. R. Vogelsang, T. Farr, and K. Frohlich: The effect of barriers on electrical tree propagation in composite insulation materials. IEEE Trans. Dielectr. Electr. Insul. 13, 373 (2006).

    Google Scholar 

  118. S.M. Lebedev, O.S. Gefle, and Y.P. Pokholkov: The barrier effect in dielectrics: the role of interfaces in the breakdown of inhomogeneous dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 537 (2005).

    Google Scholar 

  119. Q. Li, K. Han, M.R. Gadinski, G. Zhang, and Q. Wang: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244 (2014).

    CAS  Google Scholar 

  120. W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, and Z. Xu: Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96, 192905 (2010).

    Google Scholar 

Download references

Acknowledgments

The research of ECE in modified ferroelectric PVDF-based polymers was supported by U.S. DoE, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-FG02-07ER46410. The research of PVDF based polymers for capacitor application was supported by the Office of Naval Research, under grant No. N00014-14-1-0109.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoshi Qian or Q. M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Wu, S., Furman, E. et al. Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Communications 5, 115–129 (2015). https://doi.org/10.1557/mrc.2015.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.20

Navigation