Skip to main content
Log in

Understanding growth mechanisms of epitaxial manganese oxide (Mn3O4) nanostructures on strontium titanate (STO) oxide substrates

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The role of substrate orientation on interface registry and nanocrystal shape has been investigated for epitaxial manganese oxide (Mn3O4) nanocrystals. Mn3O4 (101) nanoplatelets and (112)-orientated nanowires have been successfully deposited on (111) and (110) SrTiO3 (STO) substrates, respectively. Under higher magnifications, the (101) platelets were found to exhibit step-like growth, spiraling outward from a local dislocation site at the Mn3O4–STO interface. Selected area electron diffraction analysis from transmission electron microscope (TEM) was carried out to determine the in-plane edge directionalities of (101) and (112) Mn3O4. We found the (101) Mn3O4 orientation to exhibit a complex in-plane epitaxial relation of [231̄]Mn3O4//[100]STO and an out-of-plane relation of [1̄01]Mn3O4//[1̄11]STO. Furthermore, lattice misorientations of 58° in-plane and 35° out-of-plane have been calculated, attributed to the shear caused by the spiral growth. For the (112) Mn3O4 nanowires, the TEM diffraction pattern indicates pyramidal cross-sections based along [011̄]STO. Subsequent calculations reveal that the (112) nanowires have their long axis (c-axis) such that [001]Mn3O4//[110]STO. Thus the nanowires grow preferentially along its longest axis giving rise to the observed shape and anisotropic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J. Tersoff and R.M. Tromp: Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys. Rev. Lett. 70, 2782 (1993).

    Article  CAS  Google Scholar 

  2. F. Silly and M.R. Castell: Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3. Phys. Rev. Lett. 94, 046103 (2005).

    Article  Google Scholar 

  3. M.S.J. Marshall and M.R. Castell: Shape transitions of epitaxial islands during strained layer growth: anatase TiO2 (001) on SrTiO3 (001). Phys. Rev. Lett. 102, 146102 (2009).

    Article  Google Scholar 

  4. M. Armand and J.M. Tarascon: Building better batteries. Natur. 451, 652 (2008).

    Article  CAS  Google Scholar 

  5. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011).

    Article  CAS  Google Scholar 

  6. Y. Gogotsi and P. Simon: True performance metrics in electrochemical energy storage. Scienc. 334, 917 (2011).

    Article  CAS  Google Scholar 

  7. F. Silly and M.R. Castell: Growth of Ag icosahedral nanocrystals on a SrTiO3(001) support. Appl. Phys. Lett. 87 213107:1–213107:3 (2005).

    Google Scholar 

  8. S. Rousset, S. Chiang, D.E. Fowler, and D.D. Chambliss: Intermixing and three-dimensional islands in the epitaxial growth of Au on Ag (110). Phys. Rev. Lett. 69, 3200 (1992).

    Article  CAS  Google Scholar 

  9. M. Mundschau, E. Bauer, W. Telieps, and W. Święch: In situ studies of epitaxial growth in the low energy electron microscope. Surf. Sci. 213, 381 (1989).

    Article  CAS  Google Scholar 

  10. J.N. Broughton and M.J. Brett: Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Act. 49, 4439 (2004).

    Article  CAS  Google Scholar 

  11. B. Djurfors, J.N. Broughton, M.J. Brett, and D.G. Ivey: Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor. Acta Mater. 53, 957 (2005).

    Article  CAS  Google Scholar 

  12. N.V. Andreev, T.A. Sviridova, V.I. Chichkov, A.P. Volodin, C. Van Haesendonck, and Y.M. Mukovskii: Crystal structure and surface morphology of magnetron sputtering deposited hexagonal and perovskite-like YbMnO3 thin films. J. Alloys Compd. 586, S343 (2014).

    Article  CAS  Google Scholar 

  13. M.E. Davis: Ordered porous materials for emerging applications. Natur. 417, 813 (2002).

    Article  CAS  Google Scholar 

  14. H. Xia, Y.S. Meng, X. Li, G. Yuan, and C. Cui: Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors. J. Mater. Chem. 21, 15521 (2011).

    Article  CAS  Google Scholar 

  15. K.A. Bogle, V. Anbusathaiah, M. Arredondo, J.-Y. Lin, Y.-H. Chu, C. O’Neill, J.M. Gregg, M.R. Castell, and V. Nagarajan: Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach. ACS Nan. 4, 5139 (2010).

    Article  CAS  Google Scholar 

  16. K.A. Bogle, J. Cheung, Y.-L. Chen, S.-C. Liao, C.-H. Lai, Y.-H. Chu, J.M. Gregg, S.B. Ogale, and N. Valanoor: Epitaxial magnetic oxide nanocrystals via phase decomposition of bismuth perovskite precursors. Adv. Funct. Mater. 22, 5224 (2012).

    Article  CAS  Google Scholar 

  17. J. Liu, Y.H. Ng, M.B. Okatan, R. Amal, K.A. Bogle, and V. Nagarajan: Interface-dependent electrochemical behavior of nanostructured manganese (IV) oxide (Mn3O4). Electrochim. Act. 130, 810 (2014).

    Article  CAS  Google Scholar 

  18. W.K. Burton, N. Cabrera, and F.C. Frank: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Ser. 243, 299 (1951).

    Google Scholar 

  19. F.C. Frank: The growth of carborundum: dislocations and polytypism. Philos. Mag. 42, 1014 (1951).

    Article  Google Scholar 

  20. M. Seiss, T. Ouisse, and D. Chaussende: Comparison of the spiral growth modes of silicon-face and carbon-face silicon carbide crystals. J. Cryst. Growt. 384, 129 (2013).

    Article  CAS  Google Scholar 

  21. F.C. Frank: The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48 (1949).

    Article  Google Scholar 

  22. N. Cabrera and W.K. Burton: Crystal growth and surface structure. Part II. Discuss. Faraday Soc. 5, 40 (1949).

    Article  Google Scholar 

  23. W.K. Burton and N. Cabrera: Crystal growth and surface structure. Part I. Discuss. Faraday Soc. 5, 33 (1949).

    Article  Google Scholar 

  24. D. Ciesielski and C. Oleksy: Diffusion and aggregation of adatoms on faceted Pd/Mo (111) surface. Surf. Sci. 606, 1481 (2012).

    Article  CAS  Google Scholar 

  25. M. Hata, T. Isu, A. Watanabe, Y. Kajikawa, and Y. Katayama: Surface diffusion and sticking coefficient of adatoms to atomic steps during molecular beam epitaxy growth. J. Cryst. Growt. 114, 203 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The TEM data were acquired at Australian Centre for Microscopy & Microanalysis (ACMM) in Sydney University, Australia. The authors specially thank Dr. Hongwei Liu for technical support and Mr. Henry Liu for the crystal structure graphics shown in S1. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valanoor Nagarajan.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.Y., Cheng, X., Nagarajan, V. et al. Understanding growth mechanisms of epitaxial manganese oxide (Mn3O4) nanostructures on strontium titanate (STO) oxide substrates. MRS Communications 5, 277–284 (2015). https://doi.org/10.1557/mrc.2015.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.12

Navigation