Skip to main content
Log in

Phonon drag effect in nanocomposite FeSb2

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes. The comparison of the single crystals and nanocomposites of varying grain sizes indicates the presence of substantial phonon drag effects in this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is drastically reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H. Holseth and A. Kjekshus: Compounds with marcasite type of structure IV. The crystal structure of FeSb2. Acta Chem. Scand. 23, 3043 (1969).

    Article  CAS  Google Scholar 

  2. A.K.L. Fan, G.H. Rosenthal, H.L. McKinzie, and A. Wold: Preparation and properties of FeAs2 and FeSb2. J. Solid State Chem. 5, 136 (1972).

    Article  CAS  Google Scholar 

  3. J. Steger and E. Kostiner: Mossbauer effect study of FeSb2. J. Solid State Chem. 5, 131 (1972).

    Article  CAS  Google Scholar 

  4. C. Petrovic, J.W. Kim, S.L. Bud’ko, A.I. Goldman, and P.C. Canfield: Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2. Phys. Rev. B 67, 155205 (2003).

    Article  Google Scholar 

  5. A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, and F. Steglich: Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Euro. Phys. Lett. 80, 17008 (2007).

    Article  Google Scholar 

  6. H. Zhao, M. Pokharel, G. Zhu, S. Chen, K. Lukas, J. Qing, C. Opeil, G. Chen, and Z. Ren: Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2. Appl. Phys. Lett. 99, 163101 (2011).

    Google Scholar 

  7. C. Herring: Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163 (1954).

    Article  CAS  Google Scholar 

  8. T.H. Geballe and G.W. Hull: Seebeck effect in silicon. Phys. Rev. 94, 1134 (1954).

    Article  CAS  Google Scholar 

  9. P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans. 39, 1012 (2010).

    Article  CAS  Google Scholar 

  10. P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: FeSb2: prototype of huge electron-diffusion thermoelectricity. Phys. Rev. B 79, 153308 (2009).

    Article  Google Scholar 

  11. A. Bentien, G.K.H. Madsen, S. Johnsen, and B.B. Iversen: Experimental and theoretical investigations of strongly correlated FeSb2−xSnx. Phys. Rev. B 74, 205105 (2006).

    Article  Google Scholar 

  12. P. Sun, M. Søndergaard, Y. Sun, S. Johnsen, B.B. Iversen, and F. Steglich: Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2−xTex. Appl. Phys. Lett. 98, 072105 (2011).

    Article  Google Scholar 

  13. H. Takahashi, R. Okazaki, Y. Yasui, and I. Terasaki: Low-temperature magnetotransport of narrow-gap semiconductor FeSb2. Phys. Rev. B 84, 205215 (2011).

    Article  Google Scholar 

  14. J.M. Tomczak, K. Haule, T. Miyake, A. Georges, and G. Kotliar: Thermopower of correlated semiconductors: application to FeAs2 and FeSb2. Phys. Rev. B 82, 085104 (2010).

    Article  Google Scholar 

  15. N. Kh. Abrikosov and L.I. Petrova: The polythermal cross-section FeSb2-FeTe2 of the Fe-Sb-Te system. Inorg. Mater. 25, 1087 (1989).

    Google Scholar 

  16. Y. Sun, S. Johnsen, P. Eklund, M. Sillassen, J. Bøttiger, N. Oeschler, P. Sun, F. Steglich, and B.B. Iversen: Thermoelectric transport properties of highly oriented FeSb2 thin films. J. Appl. Phys. 106, 033710 (2009).

    Article  Google Scholar 

  17. L. Weber, M. Lehr, and E. Gmelin: Reduction of the thermopower in semiconducting point contacts. Phys. Rev. B 46, 9511 (1992).

    Article  CAS  Google Scholar 

  18. F.J. Blatt:. Physics of Electronic Conduction in Solids (McGraw-Hill, New York, NY, 1968).

    Google Scholar 

  19. Q.R. Hou, B.F. Gu, Y.B. Chen, and Y.J. He: Phonon-drag effect of ultrathin FeSi2 and MnSi1.7/FeSi2 films. Mod. Phys. Lett. B 25, 1829 (2011).

    Article  CAS  Google Scholar 

  20. J.P. Issi and J. Boxus: Phonon-drag low temperature refrigeration. Cryogenics 19, 517 (1979).

    Article  CAS  Google Scholar 

  21. L. Weber and E. Gmelin: Transport properties of silicon. Appl. Phys. A 53, 136 (1991).

    Article  Google Scholar 

  22. A. Perucchi, L. Degiorgi, R. Hu, C. Petrovic, and V.F. Mitrović: Optical investigation of the metal-insulator transition in FeSb2. Eur. Phys. J., B 54, 175 (2006).

    Article  CAS  Google Scholar 

  23. N. Lazarević, Z.V. Popović, R. Hu, and C. Petrovic: Evidence for electron-phonon interaction in Fe1−x MxSb2 (M = Co and Cr; 0 ≤ x ≤ 0.5) single crystals. Phys. Rev. B 81, 144302 (2010).

    Article  Google Scholar 

  24. D.T. Morelli: Phonon-drag thermopower. Ph.D. Dissertation. University of Michigan, 1985., p. 82.

    Google Scholar 

  25. J. Tang, W. Wang, G.L. Zhao, and Q. Li: Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2. J. Phys. Condens. Matter 21, 205703 (2009).

    Article  Google Scholar 

  26. C. Petrovic, Y. Lee, T. Vogt, D. J.N. Lazarov, S.L. Bud’ko, and J. Canfield: Kondo insulator description of spin state transition in FeSb2. Phys. Rev. B 72, 045103 (2005).

    Article  Google Scholar 

  27. J. Ziman: Electrons and Phonons (Oxford University Press, Oxford, UK, 2001).

    Book  Google Scholar 

  28. W.R. Thurber and A.J.H. Mante: Thermal conductivity and thermoelectric power of rutile (TiO2). Phys. Rev. 139, A1655 (1965).

    Article  CAS  Google Scholar 

  29. R.W. Keyes: Thermoelectricity: Science and Engineering, edited by R.R. Heikes and R.W. Ure Jr., (Interscience, New York, 1961).

  30. H.J. Goldsmid: Introduction to Thermoelectricity: Springer Series in Material Science (Springer-Verlag, Berlin, Germany, 2010).

    Book  Google Scholar 

  31. Y.U.V. Ivanov: Thermoelectric Handbook: Macro to Nano, edited by D.M. Rowe (CRC Taylor and Francis, Boca Raton, FL, 2006).

  32. A.D. Becke: A new mixing of Hartree–Fock and local density–functional theories. J. Chem. Phys. 98, 1372 (1993).

    Article  CAS  Google Scholar 

  33. L. Hedin: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).

    Article  CAS  Google Scholar 

  34. H.P.R. Frederikse and E.V. Mielczarek: Thermoelectric power of indium antimonide. Phys. Rev. 99, 1889 (1955).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. Heremans, K. Kempa, and R. Farrell, S.J. for helpful discussions and comments on the manuscript. C.O. acknowledges financial support from the Trustees of Boston College. We gratefully acknowledge funding for this work by the Department of Defense, United States Air Force Office of Scientific Research, Multi-University Research Initiative (MURI) Program under Contract No. FA9550-10-1-0533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Pokharel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokharel, M., Zhao, H., Lukas, K. et al. Phonon drag effect in nanocomposite FeSb2. MRS Communications 3, 31–36 (2013). https://doi.org/10.1557/mrc.2013.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.7

Navigation