Skip to main content
Log in

Emergence of central mode in the paraelectric phase of ferroelectric perovskites

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

THz-range dielectric spectroscopy and first-principle-based effective-Hamiltonian molecular dynamics simulations were used to elucidate the dielectric response in the paraelectric phase of (Ba, Sr)TiO3 solid solutions. Our analysis suggests a crossover between two regimes: a highertemperature regime governed by the soft mode only versus a lower-temperature regime exhibiting a coupled soft mode/central mode dynamics. Interestingly, a single model can be used to adjust the THz dielectric response in the entire range of the paraelectric phase. The central peak cannot be discerned anymore in the dielectric spectra when the rate of underlying thermally activated processes exceeds certain characteristic frequency of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. R.H. Lyddane, R.G. Sachs, and E. Teller: On the polar vibrations of alkali halides. Phys. Rev. 59, 673 (1941).

    Article  CAS  Google Scholar 

  2. J. Petzelt, G.V. Kozlov, and A.A. Volkov: Dielectric spectroscopy of paraelectric soft modes. Ferroelectrics 73, 101 (1987).

    Article  CAS  Google Scholar 

  3. S.M. Shapiro, J.D. Axe, G. Shirane, and T. Riste: Critical neutron scattering in SrTiO3 and KMnF3. Phys. Rev. B 6, 4332 (1972).

    Article  CAS  Google Scholar 

  4. Y. Girshberg and Y. Yacobi: Ferroelectric phase transitions in perovskites with off-center ion displacements. Solid State Commun. 103, 425 (1997).

    Article  CAS  Google Scholar 

  5. Y. Onodera: Dynamical response of ferroelectrics in terms of a classical anharmonic-oscillator model. J. Phys. Soc. Jpn. 73, 1216 (2004).

    Article  CAS  Google Scholar 

  6. J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, and L. Bellaiche: Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).

    Article  CAS  Google Scholar 

  7. R. Pirc and R. Blinc: Off-center Ti model of barium titanate. Phys. Rev. B 70, 134107 (2004).

    Article  Google Scholar 

  8. H. Vogt, J.A. Sanjurjo, and G. Rossbroich: Soft-mode spectroscopy in cubic BaTiO3 by hyper-Raman scattering. Phys. Rev. B 26, 5904 (1982).

    Article  CAS  Google Scholar 

  9. I. Ponomareva, L. Bellaiche, T. Ostapchuk, J. Hlinka, and J. Petzelt: Terahertz dielectric response of cubic BaTiO3. Phys. Rev. B 77, 012102 (2008).

    Article  Google Scholar 

  10. V.B. Shirokov, V.I. Torgashev, A.A. Bakirov, and V.V. Lemanov: Concentration phase diagram of BaxSr1−xTiO3 solid solutions. Phys. Rev. B 73, 104116 (2006).

    Article  Google Scholar 

  11. L. Walizer, S. Lisenkov, and L. Bellaiche: Finite-temperature properties of (Ba,Sr)TiO3 systems from atomistic simulations. Phys. Rev. B 73, 144105 (2006).

    Article  Google Scholar 

  12. T. Ostapchuk, J. Petzelt, P. Kuzel, M. Savinov, J. Hlinka, A. Tkach, P. M. Vilarinho, S. Lisenkov, I. Ponomareva, and L. Bellaiche: Lattice dynamics in BaO.7SrO.3TiO3: study by THz and IR spectroscopy and ab initio simulations. Phase Transitions 83, 955 (2010).

    Article  CAS  Google Scholar 

  13. T. Ostapchuk, J. Petzelt, J. Hlinka, V. Bovtun, P. Kuzel, I. Ponomareva, S. Lisenkov, L. Bellaiche, A. Tkach, and P. Vilarinho: Broad-band dielectric spectroscopy and ferroelectric soft-mode response in the BaO.6SrO.4TiO3 solid solution. J. Phys.: Condens. Matter 21, 474215 (2009).

    CAS  Google Scholar 

  14. W. Zhong, D. Vanderbilt, and K.M. Rabe: Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861 (1994); Phys. Rev. B 52, 6301 (1995).

    Article  CAS  Google Scholar 

  15. L. Bellaiche and D. Vanderbilt: Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877 (2000).

    Article  CAS  Google Scholar 

  16. N.J. Ramer and A.M. Rappe: Application of a new virtual crystal approach for the study of disordered perovskites. J. Phys. Chem. Solids 61, 315 (2000).

    Article  CAS  Google Scholar 

  17. E. Dul’kin, J. Petzelt, S. Kamba, E. Mojaev, and M. Roth: Relaxor-like behavior of BaTiO3 crystals from acoustic emission study. Appl. Phys. Lett. 97, 032903 (2010).

    Article  Google Scholar 

  18. M. Roth, E. Mojaev, E. Dul’kin, P. Gemeiner, and B. Dkhil: Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics. Phys. Rev. Lett. 98, 265701 (2007).

    Article  Google Scholar 

  19. G. Burns and F.H. Dacol: Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 48, 853 (1983).

    Article  CAS  Google Scholar 

  20. B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul’kin, E. Mojaev and M. Roth: Intermediate temperature scale T* in lead-based relaxor systems. Phys. Rev. B 80, 064103 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jan Petzelt for useful discussions. J.H. acknowledges the support of the Czech Ministry of Education (Project MSMT ME08109). J.W. and L.B. acknowledge the financial support of NSF DMR-1066158 and DMR-0701558. They also acknowledge ONR Grants N00014-11-1-0384, N00014-12-1-1034 and N00014-08-1-0915, the Department of Energy, Office of Basic Energy Sciences, under Contract ER-46612, and ARO Grant W911NF-12-1-0085 for discussions with scientists sponsored by these grants. I.P. acknowledges the financial support of the Department of Energy, Office of Basic Energy Sciences under Grant DE-SC0005245. Some computations were also made possible thanks to the MRI Grant 0722625 from NSF, ONR Grant N00014-07-1-0825 (DURIP), and a Challenge grant from the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hlinka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weerasinghe, J., Bellaiche, L., Ostapchuk, T. et al. Emergence of central mode in the paraelectric phase of ferroelectric perovskites. MRS Communications 3, 41–45 (2013). https://doi.org/10.1557/mrc.2013.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.5

Navigation