Skip to main content

Advertisement

Log in

Ab initio investigation in PbZrO\(_3\) antiferroelectric: structural and vibrational properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using first-principles calculations, we investigate the structural and vibrational properties of PbZrO\(_3\). Starting from the high-symmetry cubic perovskite phase, for which the phonon dispersion curves are reported to have many unstable branches, we identify some key intrinsic characteristics allowing the prediction of materials with the propensity of developing an antiferroelectric behavior. We confirm the key role that R antiferrodistortive modes play in condensing the observed antiferroelectric phase, via a cooperative bilinear coupling, and the nearest with the ferroelectric state. Our work shows that, given all their important potential wells none of the individual modes condensed deletes all other and that it is their coupling which plays a key role in the condensation of the ground state lead zirconate, and these couplings would explain why Pbam and R3c phases are close in energy for promoting the first-order transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Sawaguchi, H. Maniwa, S. Hoshino, Phys. Rev. 83, 1078 (1951). https://doi.org/10.1103/PhysRev.83.1078

    Article  ADS  Google Scholar 

  2. G. Shirane, E. Sawaguchi, Y. Takagi, Phys. Rev. 84, 476 (1951). https://doi.org/10.1143/JPSJ.7.336

    Article  ADS  Google Scholar 

  3. B.A. Scott, G. Burns, J. Am. Ceram. Soc. 55, 331 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11303.x

    Article  Google Scholar 

  4. H. Fujishita, Y. Shiozaki, N. Achiwa, E. Sawaguchi, J. Phys. Soc. Jpn. 51, 3583 (1982). https://doi.org/10.1143/JPSJ.51.3583

    Article  ADS  Google Scholar 

  5. A.M. Glazer, K. Roleder, J. Dec, Acta Cryst. B 49, 846 (1993). https://doi.org/10.1107/S0108768193005129

    Article  Google Scholar 

  6. K. Roleder, M. Maglione, M.D. Fontana, J. Dec, J. Phys. Condens. Matter 8, 10669 (1996). https://doi.org/10.1088/0953-8984/8/49/051

    Article  ADS  Google Scholar 

  7. N. Sicron, Y. Yacoby, E.A. Stern, F. Dogan, J. Phys. IV France 7, C2-1047 (1997). https://doi.org/10.1051/jp4:19972134

    Article  Google Scholar 

  8. D.L. Corker, A.M. Glazer, J. Dec, K. Roleder, R.W. Whatmore, Acta Cryst. B 53, 135 (1997). https://doi.org/10.1107/S0108768196012414

    Article  Google Scholar 

  9. K. Roleder, I. Jankowska-Sumara, G.E. Kugel, M. Maglione, M.D. Fontana, J. Dec, Phase Transitions 71, 287 (2000). https://doi.org/10.1080/01411590008209310

    Article  Google Scholar 

  10. T. Ostapchuk et al., J. Phys. Condens. Matter 13, 2677 (2001). https://doi.org/10.1088/0953-8984/13/11/322

    Article  ADS  Google Scholar 

  11. H. Fujishita, S. Hoshino, J. Phys. Soc. Jpn. 53, 226 (1984). https://doi.org/10.1143/JPSJ.53.226

    Article  ADS  Google Scholar 

  12. V.J. Tennery, J. Am. Ceram. Soc. 49, 483 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb13304.x

    Article  Google Scholar 

  13. H. Fujishita, J. Phys. Soc. Jpn. 61, 3606 (1992). https://doi.org/10.1143/JPSJ.61.3606

    Article  ADS  Google Scholar 

  14. H. Fujishita, S. Katano, J. Phys. Soc. Jpn. 66, 3484 (1997). https://doi.org/10.1143/JPSJ.66.3484

    Article  ADS  Google Scholar 

  15. D.J. Singh, Phys. Rev. B 52, 12559 (1995). https://doi.org/10.1103/PhysRevB.52.12559

    Article  ADS  Google Scholar 

  16. U.V. Waghmare, K.M. Rabe, Ferroelectrics 194, 135 (1997). https://doi.org/10.1080/00150199708016088

    Article  Google Scholar 

  17. J. Baedi, S.M. Hosseini, A. Kompany, E. Attaran Kakhki, Phys. Stat. Sol. B 245, 2572 (2008). https://doi.org/10.1002/pssb.200743493

    Article  ADS  Google Scholar 

  18. G. Pilania, D.Q. Tan, Y. Cao, V.S. Venkataramani, Q. Chen, R. Ramprasad, J. Mater. Sci. 44, 5249 (2009). https://doi.org/10.1007/s10853-009-3465-0

    Article  ADS  Google Scholar 

  19. D.J. Singh, Ferroelectrics 194, 299 (1997). https://doi.org/10.1080/00150199708016101

    Article  Google Scholar 

  20. S. Teslic, T. Egami, Acta Cryst. B 54, 750 (1998). https://doi.org/10.1107/S0108768198003802

    Article  Google Scholar 

  21. F. Jona, G. Shirane, F. Mazzi, R. Pepinsky, Phys. Rev. 105, 849 (1957). https://doi.org/10.1103/PhysRev.105.849

    Article  ADS  Google Scholar 

  22. G.A. Samara, Phys. Rev. B 1, 3777 (1970). https://doi.org/10.1103/PhysRevB.1.3777

    Article  ADS  Google Scholar 

  23. X. Dai, J.-F. Li, D. Viehland, Phys. Rev. B 51, 2651 (1995). https://doi.org/10.1103/PhysRevB.51.2651

    Article  ADS  Google Scholar 

  24. H. Liu, B. Dkhil, Zeit. Kristallogr. 226, 163 (2011). https://doi.org/10.1524/zkri.2011.1336

    Article  Google Scholar 

  25. A.M. Glazer, Acta Cryst. B 28, 3384 (1972). https://doi.org/10.1107/S0567740872007976

    Article  Google Scholar 

  26. A.M. Glazer, Acta Cryst. A 31, 756 (1975). https://doi.org/10.1107/S0567739475001635

    Article  Google Scholar 

  27. P.M. Woodward, Acta Cryst. B 53, 44 (1977). https://doi.org/10.1107/S0108768196012050

    Article  Google Scholar 

  28. B. Xu, O. Hellman, L. Bellaiche, Phys. Rev. B 100, 020102(R) (2019). https://doi.org/10.1103/PhysRevB.100.020102

    Article  ADS  Google Scholar 

  29. J. Íñiguez, M. Stengel, S. Prosandeev, L. Bellaiche, Phys. Rev. B 90, 220103(R) (2014). https://doi.org/10.1103/PhysRevB.90.220103

    Article  ADS  Google Scholar 

  30. R. Kagimura, D.J. Singh, Phys. Rev. B 77, 104113 (2008). https://doi.org/10.1103/PhysRevB.77.104113

    Article  ADS  Google Scholar 

  31. J. Hlinka et al., Phys. Rev. Lett. 112, 197601 (2014). https://doi.org/10.1103/PhysRevLett.112.197601

    Article  ADS  Google Scholar 

  32. K. M. Rabe, in Functional Metal Oxides: New Science and Novel Applications, ed. by S. Ogale and V. Venkateshan (Wiley, Hoboken, NJ, 2013)

  33. X. Gonze et al., Comput. Mat. Science 25, 478 (2002) https://doi.org/10.1016/S0927-0256(02)00325-7et al (2005)

  34. X. Gonze et al., Zeit. Kristallogr. 220, 558 (2005). https://doi.org/10.1524/zkri.220.5.558.65066

    Article  Google Scholar 

  35. X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009). https://doi.org/10.1016/j.cpc.2009.07.007

    Article  ADS  Google Scholar 

  36. http://www.abinit.org

  37. Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006). https://doi.org/10.1103/PhysRevB.73.235116

    Article  ADS  Google Scholar 

  38. http://opium.sourceforge.net/

  39. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997). https://doi.org/10.1103/PhysRevB.55.10355

    Article  ADS  Google Scholar 

  40. H. T. Stokes, D. M. Hatch, B. J. Campbell, ISODISTORT, ISOTROPY Software Suite, iso.byu.edu. http://stokes.byu.edu/isotropy.html

  41. D. Orobengoa, C. Capillas, M.I. Aroyo, J.M. Perez-Mato, J. Appl. Cryst. A 42, 820–833 (2009)

    Article  Google Scholar 

  42. B.J. Campbell, H.T. Stokes, D.E. Tanner, D.M. Hatch, J. Appl. Cryst. 39, 607 (2006)

    Article  Google Scholar 

  43. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 49, 5828 (1993). https://doi.org/10.1103/PhysRevB.49.5828

    Article  ADS  Google Scholar 

  44. E. Sawaguchi, J. Phys. Soc. Jpn. 8, 615 (1953). https://doi.org/10.1143/JPSJ.8.615

    Article  ADS  Google Scholar 

  45. S. Aoyagi, Y. Kuroiwa, A. Sawada, H. Tanaka, E. Nishibori, M. Takata, M. Sakata, J. Phys. Soc. Jpn. 71, 2353–2356 (2002). https://doi.org/10.1143/jpsj.71.2353

    Article  ADS  Google Scholar 

  46. R.I. Eglitis, M. Rohlfing, J. Phys. Condens. Matter 22, 415901 (2010). https://doi.org/10.1088/0953-8984/22/41/415901

    Article  Google Scholar 

  47. Yu.F. Zhukovskii, E.A. Kotomin, S. Piskunov, D.E. Ellis, Solid State Commun. 149, 1359 (2009). https://doi.org/10.1016/j.ssc.2009.05.023

    Article  ADS  Google Scholar 

  48. H. Fujishita, Y. Ishikawa, S. Tanaka, A.O. Sawaguchi, S. Katano, J. Phys. Soc. Jpn. 72, 1426 (2003). https://doi.org/10.1143/JPSJ.72.1426

    Article  ADS  Google Scholar 

  49. M.D. Johannes, D.J. Singh, Phys. Rev. B 71, 212101 (2005). https://doi.org/10.1103/PhysRevB.71.212101

    Article  ADS  Google Scholar 

  50. W. Zhong, R.D. King-Smith, D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994). https://doi.org/10.1103/PhysRevLett.72.3618

    Article  ADS  Google Scholar 

  51. B.K. Mani, S. Lisenkov, I. Ponomareva, Phys. Rev. B 91, 134112 (2015). https://doi.org/10.1103/PhysRevB.91.134112

    Article  ADS  Google Scholar 

  52. E. Cockayne, K.M. Rabe, J. Phys. Chem. Solids 61, 305 (2000). https://doi.org/10.1016/S0022-3697(99)00298-X

    Article  ADS  Google Scholar 

  53. P. Tolédano, D.D. Khalyavin, Phys. Rev. B 99, 024105 (2019). https://doi.org/10.1103/PhysRevB.99.024105

    Article  ADS  Google Scholar 

  54. S. Amisi, E. Bousquet, K. Katcho, Ph. Ghosez, Phys. Rev. B 85, 064112 (2012). https://doi.org/10.1103/PhysRevB.85.064112

    Article  ADS  Google Scholar 

  55. G.A. Samara, T. Sakudo, K. Yoshimitsu, Phys. Rev. Lett. 35, 1767 (1975). https://doi.org/10.1103/PhysRevLett.35.1767

    Article  ADS  Google Scholar 

  56. M. Ghita, M. Fornari, D.J. Singh, S.V. Halilov, Phys. Rev. B 72, 054114 (2005). https://doi.org/10.1103/PhysRevB.72.054114

    Article  ADS  Google Scholar 

  57. https://www.ulg.ac.be/cms/c_3826073/fr/nic4, http://www.ceci-hpc.be/

Download references

Acknowledgements

This work was supported by Belgian Technical Cooperation (BTC) and the Wallonie Bruxelles International (WBI). We used the facilities provided by the CECI supercomputing center [57]. Author thanks Prof. P. Ghosez, Doctors E. Bousquet and M. M. Schmitt both of Physique Théorique des Matériaux (ULiège) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safari Amisi.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amisi, S. Ab initio investigation in PbZrO\(_3\) antiferroelectric: structural and vibrational properties. Eur. Phys. J. Plus 136, 653 (2021). https://doi.org/10.1140/epjp/s13360-021-01639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01639-x

Navigation