Skip to main content
Log in

Vacancy breathing by grain boundaries—a mechanism of memristive switching in polycrystalline oxides

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

It is widely believed that switching to the conductive state in memristive materials is triggered by the external field that drives defect dynamics. In polycrystalline materials, grain boundaries are further believed to cause switching by enabling faster defect motion. Here, we report a firstprinciple study of oxygen vacancy dynamics at a grain boundary (GB) in polycrystalline ZnO and show that switching to the conductive state is triggered by a recombination-enhanced motion of vacancies perpendicular to the GB. We call this mechanism the “breathing” trigger of memristive switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams: The missing memristor found. Nature 453, 80 (2008).

    Article  CAS  Google Scholar 

  2. L.O. Chua and S.M. Kang: Memristive devices and systems. Proc. IEEE 64, 209 (1976).

    Article  Google Scholar 

  3. H. Akinaga and H. Shima: Resistive random access memory (ReRAM) based on metal oxides. IEEE 98, 2237 (2010).

    Article  CAS  Google Scholar 

  4. B. Muthuswamy and P.P. Kokate: Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417 (2009).

    Article  Google Scholar 

  5. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, and W. Lu: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297 (2010).

    Article  CAS  Google Scholar 

  6. Y.V. Pershin and M. Di Ventra: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008).

    Article  Google Scholar 

  7. L.A. Agapito, S. Alkis, J.L. Krause, and H.-P. Cheng: Atomistic origins of molecular memristors. J. Phys. Chem. C 113, 20713 (2009).

    Article  CAS  Google Scholar 

  8. A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N.D. Mathur, M. Bibes, A. Barthélémy, and J. Grollier: A ferroelectric memristor. Nat. Mater. 11, 860 (2012).

    Article  CAS  Google Scholar 

  9. A.S. Oblea, A. Timilsina, D. Moore, and K.A. Campbell: Silver chalcogenide based memristor devices. In IEEE International Joint Conference on Neural Networks. Proceedings, 2010; p. 1.

    Google Scholar 

  10. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).

    Article  CAS  Google Scholar 

  11. H.Y. Lee, P-S. Chen, T-Y. Wu, Y.S. Chen, F. Chen, C-C. Wang, P-J. Tzeng, C.H. Lin, M-J. Tsai, and C. Lien: HfOx bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett. 30, 703 (2009).

    Article  CAS  Google Scholar 

  12. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chungand I.T. Moon: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004; p. 587.

    Chapter  Google Scholar 

  13. W-Y. Chang, Y-C. Lai, T-B. Wu, S-F. Wang, F. Chen, and M-J. Tsai: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 022110 (2008).

    Article  Google Scholar 

  14. N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008).

    Article  Google Scholar 

  15. S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, and K. Yong: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95, 262113 (2009).

    Article  Google Scholar 

  16. K. McKenna and A. Shluger: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).

    Article  Google Scholar 

  17. K. Szot, W. Speier, G. Bihlmayer, and R. Waser: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).

    Article  CAS  Google Scholar 

  18. C. Park, S.H. Jeon, S.C. Chae, S. Han, B.H. Park, S. Seo, and D-W. Kim: Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Appl. Phys. Lett. 93, 042102 (2008).

    Article  Google Scholar 

  19. S. Yu and P.S. Wong: A phenomenological model of oxygen ion transport for metal oxide resistive switching memory. In Memory Workshop (IMW), 2010 IEEE International, 2010; p. 54.

    Google Scholar 

  20. W. Korner, P.D. Bristowe, and C. Elsasser: Density functional theory study of stoichiometric and nonstoichiometric ZnO grain boundaries. Phys. Rev. B 84, 045305 (2011).

    Article  Google Scholar 

  21. J. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  23. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  24. G. Henkelman and H. Jonsson: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

    Article  CAS  Google Scholar 

  25. A. Janotti and C.G. Van de Walle: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).

    Article  Google Scholar 

  26. D.V. Lang: Recombination-enhanced reactions in semiconductors. Ann. Rev. of Mater. Sci. 12, 377 (1982).

    Article  CAS  Google Scholar 

  27. N. Itoh and A.M. Stoneham: Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  28. S. Zh. Karazhanov, Y. Zhang, W.-L. Wang, A. Mascarenhas, and S. Deb: Resonant defect states and strong lattice relaxation of oxygen vacancies in WO3. Phys. Rev. B 68, 233204 (2003).

    Article  Google Scholar 

  29. J.L. Gavartin, D. Muñoz Ramo, A.L. Shluger, G. Bersuker, and B.H. Lee: Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908 (2006).

    Article  Google Scholar 

  30. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi: Resistive switching characteristics of Sol–Gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Devices 56, 696 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundationgrant DMR-1207241 and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant # DMR130072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Puzyrev, Y.S. & Pantelides, S.T. Vacancy breathing by grain boundaries—a mechanism of memristive switching in polycrystalline oxides. MRS Communications 3, 167–170 (2013). https://doi.org/10.1557/mrc.2013.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.32

Navigation