Skip to main content
Log in

Role of defects in resistive switching dynamics of memristors

  • Early Career Materials Researcher Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Resistive-switching memristors are promising device structures for future memory and neuromorphic computing applications. Defects are shown to be critical for the conducting filament formation, and resulting device performance metrics of memristors. In this prospective article, we investigate the role of defects in the resistive-switching dynamics of filamentary-type memristors, and explore defect-engineering as an effective method to rationally design controllable conduction pathways. Specifically, we propose a data-centric approach that combines the defect-knowledge obtained from first-principles calculations with the materials engineering and characterization efforts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G.E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, 38,(8), April 19, 1965, pp114 ff. IEEE Solid-State Circuits Soc. Newsl. 11(3), 33–35 (2006). https://doi.org/10.1109/n-ssc.2006.4785860

  2. D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  3. J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7(1), 011312 (2020). https://doi.org/10.1063/1.5118217

    Article  CAS  Google Scholar 

  4. Q. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x

    Article  CAS  Google Scholar 

  5. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  6. L. Chua, Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/tct.1971.1083337

    Article  Google Scholar 

  7. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9

    Article  CAS  Google Scholar 

  8. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  CAS  Google Scholar 

  9. Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1(5), 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1

    Article  Google Scholar 

  10. G.-S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, R. Waser, K. Kim, In situ observation of filamentary conducting channels in an asymmetric Ta-O5-x/TaO2-x bilayer structure. Nat. Commun. 4(1), 2382 (2013). https://doi.org/10.1038/ncomms3382

    Article  CAS  Google Scholar 

  11. W. Sun, B. Gao, M. Chi, Q. Xia, J.J. Yang, H. Qian, H. Wu, Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10(1), 3453 (2019). https://doi.org/10.1038/s41467-019-11411-6

    Article  CAS  Google Scholar 

  12. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010). https://doi.org/10.1038/nnano.2009.456

    Article  CAS  Google Scholar 

  13. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011). https://doi.org/10.1038/nmat3070

    Article  CAS  Google Scholar 

  14. C. Chang, J. Chen, C. Huang, C. Chiu, T. Lin, P. Yeh, W. Wu, Direct observation of dual-filament switching behaviors in Ta2O5-based memristors. Small 13(15), 1603116 (2017). https://doi.org/10.1002/smll.201603116

    Article  CAS  Google Scholar 

  15. S. Pi, C. Li, H. Jiang, W. Xia, H. Xin, J.J. Yang, Q. Xia, Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14(1), 35–39 (2019). https://doi.org/10.1038/s41565-018-0302-0

    Article  CAS  Google Scholar 

  16. M. Zhao, B. Gao, J. Tang, H. Qian, H. Wu, Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 7(1), 011301 (2020). https://doi.org/10.1063/1.5124915

    Article  CAS  Google Scholar 

  17. W. Song, H.K. Lee, W. Wang, M. Li, Z. Chen, J.-C. Liu, I.-T. Wang, V.Y.-Q. Zhuo, Y. Zhu, Investigation of Retention Failure Behavior in Analog RRAM Devices, in 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 1–4 (2020)

  18. W. Banerjee, Q. Liu, H. Hwang, Engineering of defects in resistive random access memory devices. J. Appl. Phys. 127(5), 051101 (2020). https://doi.org/10.1063/1.5136264

    Article  CAS  Google Scholar 

  19. A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y.-Y. Chen, B. Govoreanu, M. Jurczak, Intrinsic Switching Variability in HfO2 RRAM. in 2013 5th IEEE International Memory Workshop, pp. 30–33 (2013). https://doi.org/10.1109/imw.2013.6582090

  20. C. Li, B. Gao, Y. Yao, X. Guan, X. Shen, Y. Wang, P. Huang, L. Liu, X. Liu, J. Li, C. Gu, J. Kang, R. Yu, Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 29(10), 1602976 (2017). https://doi.org/10.1002/adma.201602976

    Article  CAS  Google Scholar 

  21. S.M. Hus, R. Ge, P.-A. Chen, L. Liang, G.E. Donnelly, W. Ko, F. Huang, M.-H. Chiang, A.-P. Li, D. Akinwande, Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16(1), 58–62 (2021). https://doi.org/10.1038/s41565-020-00789-w

    Article  CAS  Google Scholar 

  22. M. Lübben, F. Cüppers, J. Mohr, M.V. Witzleben, U. Breuer, R. Waser, C. Neumann, I. Valov, Design of defect-chemical properties and device performance in memristive systems. Sci. Adv. 6(19), 9079 (2020). https://doi.org/10.1126/sciadv.aaz9079

    Article  CAS  Google Scholar 

  23. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3(1), 732 (2012). https://doi.org/10.1038/ncomms1737

    Article  CAS  Google Scholar 

  24. H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, Q. Xia, Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6(1), 28525 (2016). https://doi.org/10.1038/srep28525

    Article  Google Scholar 

  25. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  Google Scholar 

  27. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953

    Article  Google Scholar 

  28. A. Marchewka, B. Roesgen, K. Skaja, H. Du, C. Jia, J. Mayer, V. Rana, R. Waser, S. Menzel, Nanoionic resistive switching memories: on the physical nature of the dynamic reset process. Adv. Electron. Mater. 2(1), 1500233 (2016). https://doi.org/10.1002/aelm.201500233

    Article  CAS  Google Scholar 

  29. Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang, Engineering incremental resistive switching in TaO x based memristors for brain-inspired computing. Nanoscale 8(29), 14015–14022 (2016). https://doi.org/10.1039/c6nr00476h

    Article  CAS  Google Scholar 

  30. S. Yu, X. Guan, H.-S.P. Wong, On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, monte carlo simulation, and experimental characterization. in International Electron Devices Meeting 2011, 17–311734 (2011). https://doi.org/10.1109/iedm.2011.6131572

  31. S. Kim, S. Choi, W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8(3), 2369–2376 (2014). https://doi.org/10.1021/nn405827t

    Article  CAS  Google Scholar 

  32. J. Lee, W. Schell, X. Zhu, E. Kioupakis, W.D. Lu, Charge transition of oxygen vacancies during resistive switching in oxide-based RRAM. ACS Appl. Mater. Interfaces 11(12), 11579–11586 (2019). https://doi.org/10.1021/acsami.8b18386

    Article  CAS  Google Scholar 

  33. S. Clima, K. Sankaran, Y.Y. Chen, A. Fantini, U. Celano, A. Belmonte, L. Zhang, L. Goux, B. Govoreanu, R. Degraeve, D..J. Wouters, M. Jurczak, W. Vandervorst, S..D. Gendt, G. Pourtois, RRAMs based on anionic and cationic switching: a short overview: RRAMs based on anionic and cationic switching:a short overview. Physica Status Solidi 8(6), 501–511 (2014). https://doi.org/10.1002/pssr.201409054

    Article  CAS  Google Scholar 

  34. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5(1), 4232 (2014). https://doi.org/10.1038/ncomms5232

    Article  CAS  Google Scholar 

  35. S.T. Pantelides, The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50(4), 797–858 (1978). https://doi.org/10.1103/revmodphys.50.797

    Article  CAS  Google Scholar 

  36. H.J. Queisser, E.E. Haller, Defects in semiconductors: some fatal. Some Vital. Sci. 281(5379), 945–950 (1998). https://doi.org/10.1126/science.281.5379.945

    Article  CAS  Google Scholar 

  37. W. Li, J. Shi, K.H.L. Zhang, J.L. MacManus-Driscoll, Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horiz. 7(11), 2832–2859 (2020). https://doi.org/10.1039/d0mh00899k

    Article  CAS  Google Scholar 

  38. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014). https://doi.org/10.1155/2014/578168

    Article  CAS  Google Scholar 

  39. C. Funck, S. Menzel, Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. Mater. 3(9), 3674–3692 (2021). https://doi.org/10.1021/acsaelm.1c00398

    Article  CAS  Google Scholar 

  40. H. Schroeder, Poole-Frenkel-effect as dominating current mechanism in thin oxide films-An illusion?! J. Appl. Phys. 117(21), 215103 (2015). https://doi.org/10.1063/1.4921949

    Article  CAS  Google Scholar 

  41. S.-J. Choi, G.-S. Park, K.-H. Kim, W.-Y. Yang, H.-J. Bae, K.-J. Lee, H.-I. Lee, S.Y. Park, S. Heo, H.-J. Shin, S. Lee, S. Cho, In situ observation of vacancy dynamics during resistance changes of oxide devices. J. Appl. Phys. 110(5), 056106 (2011). https://doi.org/10.1063/1.3626816

    Article  CAS  Google Scholar 

  42. Z. Yong, K.-M. Persson, M.S. Ram, G. D’Acunto, Y. Liu, S. Benter, J. Pan, Z. Li, M. Borg, A. Mikkelsen, L.-E. Wernersson, R. Timm, Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering. Appl. Surf. Sci. 551, 149386 (2021). https://doi.org/10.1016/j.apsusc.2021.149386

    Article  CAS  Google Scholar 

  43. M. Saadi, P. Gonon, C. Vallée, C. Mannequin, H. Grampeix, E. Jalaguier, F. Jomni, A. Bsiesy, On the mechanisms of cation injection in conducting bridge memories: the case of HfO2 in contact with noble metal anodes (Au, Cu, Ag). J. Appl. Phys. 119(11), 114501 (2016). https://doi.org/10.1063/1.4943776

    Article  CAS  Google Scholar 

  44. S. Clima, Y.Y. Chen, C.Y. Chen, L. Goux, B. Govoreanu, R. Degraeve, A. Fantini, M. Jurczak, G. Pourtois, First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device. J. Appl. Phys. 119(22), 225107 (2016). https://doi.org/10.1063/1.4953673

    Article  CAS  Google Scholar 

  45. M.L. Urquiza, M.M. Islam, A.C.T.V. Duin, X. Cartoixa, A. Strachan, Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics. ACS Nano 15(8), 12945–12954 (2021). https://doi.org/10.1021/acsnano.1c01466

    Article  CAS  Google Scholar 

  46. M.N.K. Alam, S. Clima, B.J. O’Sullivan, B. Kaczer, G. Pourtois, M. Heyns, J.V. Houdt, First principles investigation of charge transition levels in monoclinic, orthorhombic, tetragonal, and cubic crystallographic phases of HfO2. J. Appl. Phys. 129(8), 084102 (2021). https://doi.org/10.1063/5.0033957

    Article  CAS  Google Scholar 

  47. N. Kaiser, T. Vogel, A. Zintler, S. Petzold, A. Arzumanov, E. Piros, R. Eilhardt, L. Molina-Luna, L. Alff, Defect-stabilized substoichiometric polymorphs of hafnium oxide with semiconducting properties. ACS Appl. Mater. Interfaces 14(1), 1290–1303 (2022). https://doi.org/10.1021/acsami.1c09451

    Article  CAS  Google Scholar 

  48. Y.Y. Lebedinskii, A.G. Chernikova, A.M. Markeev, D.S. Kuzmichev, Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum. Appl. Phys. Lett. 107(14), 142904 (2015). https://doi.org/10.1063/1.4932554

    Article  CAS  Google Scholar 

  49. T.V. Perevalov, V.S. Aliev, V.A. Gritsenko, A.A. Saraev, V.V. Kaichev, Electronic structure of oxygen vacancies in hafnium oxide. Microelectron. Eng. 109, 21–23 (2013). https://doi.org/10.1016/j.mee.2013.03.005

    Article  CAS  Google Scholar 

  50. K.V. Egorov, D.S. Kuzmichev, P.S. Chizhov, Y.Y. Lebedinskii, C.S. Hwang, A..M.. Markeev, In situ control of oxygen vacancies in TaO x thin films via plasma-enhanced atomic layer deposition for resistive switching memory applications. ACS Appl. Mater. Interfaces 9(15), 13286–13292 (2017). https://doi.org/10.1021/acsami.7b00778

    Article  CAS  Google Scholar 

  51. A. Kumar, S. Mondal, K.S.R.K. Rao, Experimental evidences of charge transition levels in ZrO2 and at the Si: ZrO2 interface by deep level transient spectroscopy. Appl. Phys. Lett. 110(13), 132904 (2017). https://doi.org/10.1063/1.4979522

    Article  CAS  Google Scholar 

  52. K. Sugawara, H. Shima, M. Takahashi, Y. Naitoh, H. Suga, H. Akinaga, Low-frequency-noise spectroscopy of TaOx-based resistive switching memory. Adv. Electron. Mater. 2021, 2100758 (2021). https://doi.org/10.1002/aelm.202100758

    Article  CAS  Google Scholar 

  53. X. Wang, B. Gao, H. Wu, X. Li, D. Hong, Y. Chen, H. Qian, A nondestructive approach to study resistive switching mechanism in metal oxide based on defect photoluminescence mapping. Nanoscale 9(36), 13449–13456 (2017). https://doi.org/10.1039/c7nr02023f

    Article  CAS  Google Scholar 

  54. V.A. Gritsenko, T.V. Perevalov, D.R. Islamov, Electronic properties of hafnium oxide: a contribution from defects and traps. Phys. Rep. 613, 1–20 (2016). https://doi.org/10.1016/j.physrep.2015.11.002

    Article  CAS  Google Scholar 

  55. J. Chen, C. Huang, C. Chiu, Y. Huang, W. Wu, Switching kinetic of VCM-based memristor: evolution and positioning of nanofilament. Adv. Mater. 27(34), 5028–5033 (2015). https://doi.org/10.1002/adma.201502758

    Article  CAS  Google Scholar 

  56. P. Gao, Z. Wang, W. Fu, Z. Liao, K. Liu, W. Wang, X. Bai, E. Wang, In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41(4), 301–305 (2010). https://doi.org/10.1016/j.micron.2009.11.010

    Article  CAS  Google Scholar 

  57. D. Cooper, C. Baeumer, N. Bernier, A. Marchewka, C.L. Torre, R.E. Dunin-Borkowski, S. Menzel, R. Waser, R. Dittmann, Anomalous resistance hysteresis in oxide ReRAM: oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29(23), 1700212 (2017). https://doi.org/10.1002/adma.201700212

    Article  CAS  Google Scholar 

  58. U. Celano, J..O..d Beeck, S. Clima, M.. Luebben, P..M.. Koenraad, L.. Goux, I. Valov, W.. Vandervorst, Direct probing of the dielectric scavenging-layer interface in oxide filamentary-based valence change memory. ACS Appl. Mater. Interfaces 9(12), 10820–10824 (2017). https://doi.org/10.1021/acsami.6b16268

    Article  CAS  Google Scholar 

  59. C..G..V..d Walle, A. Janotti, Advances in electronic structure methods for defects and impurities in solids. Physica Status Solidi (b) 248(1), 19–27 (2011). https://doi.org/10.1002/pssb.201046290

    Article  CAS  Google Scholar 

  60. H. Cheng, A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 79(9), 092101 (2009). https://doi.org/10.1103/physrevb.79.092101

    Article  Google Scholar 

  61. G. Sassine, C. Nail, P. Blaise, B. Sklenard, M. Bernard, R. Gassilloud, A. Marty, M. Veillerot, C. Vallée, E. Nowak, G. Molas, Hybrid-RRAM toward next generation of nonvolatile memory: coupling of oxygen vacancies and metal ions. Adv. Electron. Mater. 5(2), 1800658 (2019). https://doi.org/10.1002/aelm.201800658

    Article  CAS  Google Scholar 

  62. H. Jiang, D.A. Stewart, Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure. J. Appl. Phys. 119(13), 134502 (2016). https://doi.org/10.1063/1.4945579

    Article  CAS  Google Scholar 

  63. H. Jiang, D.A. Stewart, Using dopants to tune oxygen vacancy formation in transition metal oxide resistive memory. ACS Appl. Mater. Interfaces 9(19), 16296–16304 (2017). https://doi.org/10.1021/acsami.7b00139

    Article  CAS  Google Scholar 

  64. W. He, H. Sun, Y. Zhou, K. Lu, K. Xue, X. Miao, Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions. Sci. Rep. 7(1), 10070 (2017). https://doi.org/10.1038/s41598-017-09413-9

    Article  CAS  Google Scholar 

  65. J. Ge, M. Chaker, Oxygen vacancies control transition of resistive switching mode in single-crystal TiO2 memory device. ACS Appl. Mater. Interfaces 9(19), 16327–16334 (2017). https://doi.org/10.1021/acsami.7b03527

    Article  CAS  Google Scholar 

  66. S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Towards forming-free resistive switching in oxygen engineered HfO2-x. Appl. Phys. Lett. 104(6), 063502 (2014). https://doi.org/10.1063/1.4864653

    Article  CAS  Google Scholar 

  67. A. Hardtdegen, C.L. Torre, F. Cüppers, S. Menzel, R. Waser, S. Hoffmann-Eifert, Improved switching stability and the effect of an internal series resistor in HfO2/TiOx bilayer ReRAM cells. IEEE Trans. Electron Devices 65(8), 3229–3236 (2018). https://doi.org/10.1109/ted.2018.2849872

    Article  CAS  Google Scholar 

  68. X. Zhong, I. Rungger, P. Zapol, H. Nakamura, Y. Asai, O. Heinonen, The effect of a Ta oxygen scavenger layer on HfO 2 -based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport. Phys. Chem. Chem. Phys. 18(10), 7502–7510 (2016). https://doi.org/10.1039/c6cp00450d

    Article  CAS  Google Scholar 

  69. W. Kim, S. Menzel, D.J. Wouters, Y. Guo, J. Robertson, B. Roesgen, R. Waser, V. Rana, Impact of oxygen exchange reaction at the ohmic interface in Ta2O5 -based ReRAM devices. Nanoscale 8(41), 17774–17781 (2016). https://doi.org/10.1039/c6nr03810g

    Article  CAS  Google Scholar 

  70. D.-Y. Cho, M. Luebben, S. Wiefels, K.-S. Lee, I. Valov, Interfacial metal-oxide interactions in resistive switching memories. ACS Appl. Mater. Interfaces 9(22), 19287–19295 (2017). https://doi.org/10.1021/acsami.7b02921

    Article  CAS  Google Scholar 

  71. Y.Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, Endurance/retention trade-off on \({\text{HfO}}_2\)/metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013). https://doi.org/10.1109/ted.2013.2241064

    Article  CAS  Google Scholar 

  72. O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafría, G. Bersuker, Leakage current through the poly-crystalline HfO2: trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 134503 (2013). https://doi.org/10.1063/1.4823854

    Article  CAS  Google Scholar 

  73. V. Iglesias, M. Lanza, K. Zhang, A. Bayerl, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, Z.Y. Shen, G. Bersuker, Degradation of polycrystalline HfO2-based gate dielectrics under nanoscale electrical stress. Appl. Phys. Lett. 99(10), 103510 (2011). https://doi.org/10.1063/1.3637633

    Article  CAS  Google Scholar 

  74. G. Bersuker, J. Yum, L. Vandelli, A. Padovani, L. Larcher, V. Iglesias, M. Porti, M. Nafría, K. McKenna, A. Shluger, P. Kirsch, R. Jammy, Grain boundary-driven leakage path formation in HfO2 dielectrics. Solid-State Electron. 65, 146–150 (2011). https://doi.org/10.1016/j.sse.2011.06.031

    Article  CAS  Google Scholar 

  75. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312–320 (2006). https://doi.org/10.1038/nmat1614

    Article  CAS  Google Scholar 

  76. L. Zhao, S.-W. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, Y. Nishi, Dopant selection rules for extrinsic tunability of hfo<inf>x</inf> rram characteristics: a systematic study. in, 2013 Symposium on VLSI Technology, pp. 106–107 (2013)

  77. R. Schmitt, J. Spring, R. Korobko, J.L.M. Rupp, Design of Oxygen Vacancy Configuration for Memristive Systems. ACS Nano 11(9), 8881–8891 (2017). https://doi.org/10.1021/acsnano.7b03116

    Article  CAS  Google Scholar 

  78. S. Kim, S. Choi, J. Lee, W.D. Lu, Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano 8(10), 10262–10269 (2014). https://doi.org/10.1021/nn503464q

    Article  CAS  Google Scholar 

  79. D. Carta, I. Salaoru, A. Khiat, A. Regoutz, C. Mitterbauer, N.M. Harrison, T. Prodromakis, Investigation of the switching mechanism in TiO2-based RRAM: a two-dimensional EDX approach. ACS Appl. Mater. Interfaces 8(30), 19605–19611 (2016). https://doi.org/10.1021/acsami.6b04919

    Article  CAS  Google Scholar 

  80. A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, I. Valov, Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11(1), 67–74 (2016). https://doi.org/10.1038/nnano.2015.221

    Article  CAS  Google Scholar 

  81. M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified interface controls transition from VCM to ECM switching modes in Ta/TaOx based memristive devices. Adv. Mater. 27(40), 6202–6207 (2015). https://doi.org/10.1002/adma.201502574

    Article  CAS  Google Scholar 

  82. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). https://doi.org/10.1002/adma.200900375

    Article  CAS  Google Scholar 

  83. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14(5), 2401–2406 (2014). https://doi.org/10.1021/nl500049g

    Article  CAS  Google Scholar 

  84. T. Gu, T. Tada, S. Watanabe, Conductive path formation in the Ta2O5 atomic switch: first-principles analyses. ACS Nano 4(11), 6477–6482 (2010). https://doi.org/10.1021/nn101410s

    Article  CAS  Google Scholar 

  85. K. Sankaran, L. Goux, S. Clima, M. Mees, J.A. Kittl, M. Jurczak, L. Altimime, G.-M. Rignanese, G. Pourtois, Modeling of copper diffusion in amorphous aluminum oxide in CBRAM memory stack. ECS Trans. 45(3), 317–330 (2012). https://doi.org/10.1149/1.3700896

    Article  CAS  Google Scholar 

  86. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  87. S. Chen, I. Valov, Design of materials configuration for optimizing redox-based resistive switching memories. Adv. Mater. 34(3), 2105022 (2022). https://doi.org/10.1002/adma.202105022

    Article  CAS  Google Scholar 

  88. T. Tsuruoka, I. Valov, S. Tappertzhofen, J.V.D. Hurk, T. Hasegawa, R. Waser, M. Aono, Redox reactions at Cu, Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater. 25(40), 6374–6381 (2015). https://doi.org/10.1002/adfm.201500853

    Article  CAS  Google Scholar 

  89. M. Lübben, I. Valov, Active electrode redox reactions and device behavior in ECM type resistive switching memories. Adv. Electron. Mater. 5(9), 1800933 (2019). https://doi.org/10.1002/aelm.201800933

    Article  CAS  Google Scholar 

  90. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91(13), 133513 (2007). https://doi.org/10.1063/1.2793686

    Article  CAS  Google Scholar 

  91. F. Yuan, Z. Zhang, C. Liu, F. Zhou, H.M. Yau, W. Lu, X. Qiu, H.-S.P. Wong, J. Dai, Y. Chai, Real-time observation of the electrode-size-dependent evolution dynamics of the conducting filaments in a SiO2 layer. ACS Nano 11(4), 4097–4104 (2017). https://doi.org/10.1021/acsnano.7b00783

    Article  CAS  Google Scholar 

  92. M. Lanza, U. Celano, F. Miao, Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups. J. Electroceram. 39(1–4), 94–108 (2017). https://doi.org/10.1007/s10832-017-0082-1

    Article  CAS  Google Scholar 

  93. S. Prada, M. Rosa, L. Giordano, C.D. Valentin, G. Pacchioni, Density functional theory study of TiO2/Ag interfaces and their role in memristor devices. Phys. Rev. B 83(24), 245314 (2011). https://doi.org/10.1103/physrevb.83.245314

    Article  Google Scholar 

  94. M. Zhou, Q. Zhao, W. Zhang, Q. Liu, Y. Dai, The conductive path in HfO2: first principles study. J. Semicond. 33(7), 072002 (2012). https://doi.org/10.1088/1674-4926/33/7/072002

    Article  CAS  Google Scholar 

  95. W. Banerjee, S.H. Kim, S. Lee, D. Lee, H. Hwang, An efficient approach based on tuned nanoionics to maximize memory characteristics in Ag-based devices. Adv. Electron. Mater. 7(4), 2100022 (2021). https://doi.org/10.1002/aelm.202100022

    Article  CAS  Google Scholar 

  96. S. Coffa, J.M. Poate, D.C. Jacobson, W. Frank, W. Gustin, Determination of diffusion mechanisms in amorphous silicon. Phys. Rev. B 45(15), 8355–8358 (1991). https://doi.org/10.1103/physrevb.45.8355

    Article  Google Scholar 

  97. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012). https://doi.org/10.1021/nl203687n

    Article  CAS  Google Scholar 

  98. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–301 (2010). https://doi.org/10.1021/nl904092h

    Article  CAS  Google Scholar 

  99. H. Yeon, P. Lin, C. Choi, S.H. Tan, Y. Park, D. Lee, J. Lee, F. Xu, B. Gao, H. Wu, H. Qian, Y. Nie, S. Kim, J. Kim, Alloying conducting channels for reliable neuromorphic computing. Nat. Nanotechnol. 15(7), 574–579 (2020). https://doi.org/10.1038/s41565-020-0694-5

    Article  CAS  Google Scholar 

  100. S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17(4), 335–340 (2018). https://doi.org/10.1038/s41563-017-0001-5

    Article  CAS  Google Scholar 

  101. P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ion. 179(35–36), 2047–2058 (2008). https://doi.org/10.1016/j.ssi.2008.06.023

    Article  CAS  Google Scholar 

  102. S.-H. Yoon, H. Kim, Effect of donor (Nb) concentration on the bulk electrical resistivity of Nb-doped barium titanate. J. Appl. Phys. 92(2), 1039–1047 (2002). https://doi.org/10.1063/1.1486049

    Article  CAS  Google Scholar 

  103. X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, Ultrafast resistive switching in SrTiO3: Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010). https://doi.org/10.1063/1.3524216

    Article  CAS  Google Scholar 

  104. B. Chae, J. Seol, J. Song, K. Baek, S. Oh, H. Hwang, C. Park, Nanometer-scale phase transformation determines threshold and memory switching mechanism. Adv. Mater. 29(30), 1701752 (2017). https://doi.org/10.1002/adma.201701752

    Article  CAS  Google Scholar 

  105. A. Mannodi-Kanakkithodi, M..Y. Toriyama, F..G.. Sen, M..J.. Davis, R..F. Klie, M..K..Y. Chan, Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides. NPJ Comput. Mater. 6(1), 39 (2020). https://doi.org/10.1038/s41524-020-0296-7

    Article  CAS  Google Scholar 

  106. A. Mannodi-Kanakkithodi, X. Xiang, L. Jacoby, R. Biegaj, S.T. Dunham, D.R. Gamelin, M.K.Y. Chan, Universal machine learning framework for defect predictions in zinc blende semiconductors. Patterns 3(3), 100450 (2022). https://doi.org/10.1016/j.patter.2022.100450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.M.K. acknowledges support from the School of Materials Engineering at Purdue University under Account Number F.10023800.05.002. G.T. acknowledges support from Wayne State University and NSF Grant CCF-2153177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozde Tutuncuoglu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutuncuoglu, G., Mannodi-Kanakkithodi, A. Role of defects in resistive switching dynamics of memristors. MRS Communications 12, 531–542 (2022). https://doi.org/10.1557/s43579-022-00243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00243-z

Keywords

Navigation