Skip to main content
Log in

Epitaxial NiO nanocrystals: a dimensional analysis

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present the study of the synthesis of (001) nickel oxide (NiO) epitaxial nanocrystals grown on (001) strontium titanate (SrTiO3) single crystal substrates. Pulsed laser deposition of the bismuth nickel oxide (BiNiO3, BNO) perovskite precursor followed by post-deposition processing is carried out to form the NiO nanocrystals. A detailed analysis of the dimensions of nanocrystals reveals that the morphology attained differs from the thermodynamically expected equilibrium shape. The deviations from the equilibrium shape are found to follow a systematic trend where the in-plane basal dimensions, that is, the length and width of the nanocrystals grown differ in discretized dimensions. This discretization suggests that for a given interfacial area of nanocrystals there are multiple stable basal rectangular geometries attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. M.R. Castell, P.L. Wincott, N.G. Condon, C. Muggelberg, G. Thornton, S.L. Dudarev, A.P. Sutton, and G.A.D. Briggs: Atomic-resolution STM of a system with strongly correlated electrons:NiO(001) surface structure and defect sites. Phys. Rev. B 55, 7859 (1997).

    Article  CAS  Google Scholar 

  2. J. Bandara and H. Weerasinghe: Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 85, 385 (2005).

    Article  CAS  Google Scholar 

  3. H. Jin, T. Okamoto, and M. Ishida: Development of a novel chemical-looping combustion: synthesis of a solid looping material of NiO/NiAl2O4. Ind. Eng. Chem. Res. 38, 126 (1998).

    Article  Google Scholar 

  4. J. Feinleib and D. Adler: Band structure and electrical conductivity of NiO. Phys. Rev. Lett. 21, 1010 (1968).

    Article  CAS  Google Scholar 

  5. K.D. Sattler: Hanbook of Nanophysics: Nanotubes and Nanowires, (CRC Press, Taylor & Francis Group, Boc. Raton, FL, 2010).

    Book  Google Scholar 

  6. M. Fernández-García and J.A. Rodriguez: Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, Ltd., 2011).

    Google Scholar 

  7. D.P. Norton: Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng., R 43, 139 (2004).

    Article  Google Scholar 

  8. M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, and C. Lee: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919 (2007).

    Article  CAS  Google Scholar 

  9. Z.P. Wei, M. Arredondo, H.Y. Peng, Z. Zhang, D.L. Guo, G.Z. Xing, Y.F. Li, L.M. Wong, S.J. Wang, N. Valanoor, and T. Wu: A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4, 4785 (2010).

    Article  CAS  Google Scholar 

  10. N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu, and D. Yang: Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 19, 1641 (2007).

    Article  CAS  Google Scholar 

  11. I. Fasaki, A. Giannoudakos, M. Stamataki, M. Kompitsas, E. György, I.N. Mihailescu, F. Roubani-Kalantzopoulou, A. Lagoyannis, and S. Harissopulos: Nickel oxide thin films synthesized by reactive pulsed laser deposition: characterization and application to hydrogen sensing. Appl. Phys. A 91, 487 (2008).

    Article  CAS  Google Scholar 

  12. B. Sasi and K.G. Gopchandran: Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 1 (2007).

    Article  Google Scholar 

  13. J. Sullaphen, K. Bogle, X. Cheng, J.M. Gregg, and N. Valanoor: Interface mediated resistive switching in epitaxial NiO nanostructures. Appl. Phys. Lett. 100, 203115 (2012).

    Article  Google Scholar 

  14. A. Barbier and G. Renaud: Structural investigation of the NiO(111) single crystal surface. Surf. Sci. 392, L15 (1997).

    Article  CAS  Google Scholar 

  15. F. Rohr, K. Wirth, J. Libuda, D. Cappus, M. Baumer, and H.J. Freund: Hydroxyl driven reconstruction of the polar NiO(111) surface. Surf. Sci. 315, L977 (1994).

    Article  CAS  Google Scholar 

  16. M. Schulze, R. Reissner, M. Lorenz, U. Radke, and W. Schnurnberger: Photoelectron study of electrochemically oxidized nickel and water adsorption on defined NiO surface layers. Electrochim. Acta 44, 3969 (1999).

    Article  CAS  Google Scholar 

  17. Z. Song, L. Chen, J. Hu, and R. Richards: NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology 20, 275707 (2009).

    Article  Google Scholar 

  18. K.A. Bogle, V. Anbusathaiah, M. Arredondo, J.-Y. Lin, Y.-H. Chu, C. O’Neill, J.M. Gregg, M.R. Castell, and V. Nagarajan: Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach. ACS Nano 4, 5139 (2010).

    Article  CAS  Google Scholar 

  19. K.A. Bogle, J. Cheung, Y.-L. Chen, S.-C. Liao, C.-H. Lai, Y.-H. Chu, J.M. Gregg, S.B. Ogale, and N. Valanoor: Epitaxial magnetic oxide nanocrystals via phase decomposition of bismuth perovskite precursors. Adv. Funct. Mater. 22, 5224 (2012).

    Article  CAS  Google Scholar 

  20. F. Silly and M.R. Castell: Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). Phys. Rev. Lett. 94, 046103 (2005).

    Article  Google Scholar 

  21. M.S.J. Marshall and M.R. Castell: Shape transitions of epitaxial islands during strained layer growth: anatase TiO2(001) on SrTiO3(001). Phys. Rev. Lett. 102, 146102 (2009).

    Article  Google Scholar 

Download references

Acknowledgment

The research at UNSW was supported by ARC Discovery and LIEF Grant. We would like to acknowledge Electron Microscopy and Solid State & Elemental Analysis Units (EMU and SSEAU) at UNSW. We are also thankful to Prof. Marty Gregg and Prof. Martin Castell for helpful discussions. Ying-Hao Chu would like to acknowledge the support of the National Science Council, Taiwan (under contract No. NSC-101-2119-M-009-003-MY2) and Ministry of Education (under grant No. MOE-ATU 102W961) and Center for Interdisciplinary Science of National Chiao Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valanoor Nagarajan.

Supplementary materials

Supplementary materials

For supplementary materials for this article, please visit http://dx.doi.org/10.1557/mrc.2013.16

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, J., Okatan, M.B., Sullaphen, J. et al. Epitaxial NiO nanocrystals: a dimensional analysis. MRS Communications 3, 107–111 (2013). https://doi.org/10.1557/mrc.2013.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.16

Navigation