Skip to main content
Log in

Quantitative in-situ TEM study of stress-assisted grain growth

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present a quantitative in-situ transmission electron microscope (TEM) study of stress-assisted grain growth in 75 nm thick platinum thin films. We utilized notch-induced stress concentration to observe the microstructural evolution in real time. From quantitative measurements, we find that rapid grain growth occurred above 290 MPa of far field stress and ~0.14% elongation. This value is found to be higher than that required for stable interface motion but lower than the stress required for unstable grain boundary motion. We attribute such grain growth to geometrical incompatibility arising out of crystallographic misorientation in adjoining grains, or in other words, geometrically necessary grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 43, 519 (1995).

    Article  CAS  Google Scholar 

  2. Y.B. Wang, B.Q. Li, M.L. Sui, and S.X. Mao: Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 92, 011903 (2008).

    Article  Google Scholar 

  3. A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51, 2097 (2003).

    Article  CAS  Google Scholar 

  4. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    Article  CAS  Google Scholar 

  5. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  6. M.A. Haque and M.T.A. Saif: Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension. Scr. Mater. 47, 863 (2002).

    Article  CAS  Google Scholar 

  7. M.A. Haque and M.T.A. Saif: Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. 101, 6335 (2004).

    Article  CAS  Google Scholar 

  8. S. Kumar, M.A. Haque, and H. Gao: Notch insensitive fracture in nanoscale thin films. Appl. Phys. Lett. 94, 253104 (2009).

    Article  Google Scholar 

  9. S. Kumar, M.T. Alam, and M.A. Haque: Fatigue insensitivity of nanoscale freestanding aluminum films. J. Microelectromech. Syst. 20, 53 (2010).

    Article  Google Scholar 

  10. S. Kumar, X. Li, A. Haque, and H. Gao: Is stress concentration relevant for nanocrystalline metals?Nano Lett. 11, 2510 (2011).

    Article  CAS  Google Scholar 

  11. J.A. Sharon, P.C. Su, F.B. Prinz, and K.J. Hemker: Stress-driven grain growth in nanocrystalline Pt thin films. Scr. Mater. 64, 25 (2011).

    Article  CAS  Google Scholar 

  12. S. Kumar, M.T. Alam, Z. Connell, and M.A. Haque: Electromigration stress induced deformation mechanisms in free-standing platinum thin films. Scr. Mater. 65, 277 (2011).

    Article  CAS  Google Scholar 

  13. B. Gao, M. Rudneva, K.S. McGarrity, Q. Xu, F. Prins, J.M. Thijssen, H. Zandbergen, and H.S.J.v.d. Zant: In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. Nanotechnology 22, 205705 (2011).

    Article  CAS  Google Scholar 

  14. Y. Zhu and H.D. Espinosa: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. 102, 14503 (2005).

    Article  CAS  Google Scholar 

  15. M.A. Haque and M.T.A. Saif: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A 97–98, 239 (2002).

    Article  Google Scholar 

  16. Y. Zhu, A. Corigliano, and H.D. Espinosa: A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J. Micromech. Microeng. 16, 242 (2006).

    Article  CAS  Google Scholar 

  17. S. Kumar, D.E. Wolfe, and M.A. Haque: Dislocation shielding and flaw tolerance in titanium nitride. Int. J. Plast. 27, 739 (2011).

    Article  CAS  Google Scholar 

  18. F. Baratta and D. Neal: Stress-concentration factors in u-shaped and semi-elliptical edge notches. J. Strain Anal. Eng. Des. 5, 121 (1970).

    Article  Google Scholar 

  19. M.Y. Gutkin and I.A. Ovid’ko: Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl. Phys. Lett. 87, 251916 (2005).

    Article  Google Scholar 

  20. J.W. Cahn, Y. Mishin, and A. Suzuki: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953 (2006).

    Article  CAS  Google Scholar 

  21. M. Winning, G. Gottstein, and L.S. Shvindlerman: On the mechanisms of grain boundary migration. Acta Mater. 50, 353 (2002).

    Article  CAS  Google Scholar 

  22. M. Winning, G. Gottstein, and L.S. Shvindlerman: Stress induced grain boundary motion. Acta Mater. 49, 211 (2001).

    Article  CAS  Google Scholar 

  23. F. Sansoz and V. Dupont: Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl. Phys. Lett. 89, 111901 (2006).

    Article  Google Scholar 

  24. J.A. Horton and S.M. Ohr: TEM observations of dislocation emission at crack tips in aluminium. J. Mater. Sci. 17, 3140 (1982).

    Article  Google Scholar 

  25. W. Zielinski, M.J. Lii, and W.W. Gerberich: Crack-tip dislocation emission arrangements for equilibrium–I. In situ TEM observations of Fe–2 wt%Si. Acta Metall. Mater. 40, 2861 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Supplementary materials

Supplementary materials

For supplementary materials for this article, please visit http://dx.doi.org/10.1557/mrc.2013.15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Alam, T. & Haque, A. Quantitative in-situ TEM study of stress-assisted grain growth. MRS Communications 3, 101–105 (2013). https://doi.org/10.1557/mrc.2013.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.15

Navigation