Skip to main content
Log in

A new electronic assay enables ultrasensitive detection of diverse biological analytes—nucleic acids, proteins and small molecules—on a single integrated circuit

  • Commentaries
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Development of universal biosensors based on electrical readout is currently limited by the difficulty of electrical signal transduction upon capture of neutral analytes. Kelley and co-workers demonstrate an elegant approach wherein an amplified electrical current flows to a multiplexed electrode array in proportion with the binding of nucleic acids, proteins, and small molecules—regardless of their inherent charge. Here we present a commentary on the strengths and limitations of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. L. Soleymani, Z. Fang, E. Sargent, and S.O. Kelley: Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4, 844 (2009).

    Article  CAS  Google Scholar 

  2. A. Ziegler, A. Koch, K. Krockenberger, and A. Großhennig: Personalized medicine using DNA biomarkers: a review. Hum. Genet. 131, 1627 (2012).

    Article  CAS  Google Scholar 

  3. N. Rifai, M.A. Gillette, and S.A. Carr: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971 (2006).

    Article  CAS  Google Scholar 

  4. A.B. Iliuk, L. Hu, and W.A. Tao: Aptamer in bioanalytical applications. Anal. Chem. 83, 4440 (2011).

    Article  CAS  Google Scholar 

  5. J. Das, K.B. Cederquist, A.A. Zaragoza, P.E. Lee, E.H. Sargent, and S.O. Kelley: An ultrasensitive universal detector based on neutralizer displacement. Nat. Chem. 4, 642 (2012).

    Article  CAS  Google Scholar 

  6. M. Lapierre-Devlin, C.L. Asher, B.J. Taft, R. Gasparac, M.A. Roberts, and S.O. Kelley: Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 5, 1051 (2005).

    Article  CAS  Google Scholar 

  7. T.G. Drummond, M.G. Hill, and J.K. Barton: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192 (2003).

    Article  CAS  Google Scholar 

  8. B.M. Zeglis and J.K. Barton: DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications. Nat. Biotechnol. 2, 357 (2007).

    CAS  Google Scholar 

  9. H. Wang, A.K. Bhunia, and C. Lu: A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 22, 582 (2006).

    Article  CAS  Google Scholar 

  10. K.W. Plaxco and H.T. Soh: Witch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol. 29, 1 (2011).

    Article  CAS  Google Scholar 

  11. M.A. Lapierre, M. O’Keefe, B.J. Taft, and S.O. Kelley: Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Anal. Chem. 75, 6327 (2003).

    Article  CAS  Google Scholar 

  12. L. Soleymani, Z. Fang, X. Sun, H. Yang, B. Taft, E. Sargent, and S.O. Kelley: Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew. Chem. Int. Ed. (International ed. in English). 48, 8457 (2009).

    Article  CAS  Google Scholar 

  13. R. Gasparac, B.J. Taft, M. Lapierre-Devlin, A.D. Lazareck, J.M. Xu, and S.O. Kelley: Ultrasensitive electrocatalytic DNA detection with 3D nanoelectrodes. J. Am. Chem. Soc. 126, 12270 (2004).

    Article  CAS  Google Scholar 

  14. L. Soleymani, Z. Fang, S.O. Kelley, and E.H. Sargent: Integrated nanostructures for direct detection of DNA at attomolar concentrations. Appl. Phys. Lett. 95, 143701 (2009).

    Article  Google Scholar 

  15. W. Yao, L. Wang, H. Wang, X. Zhang, and L. Li: An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosens. Bioelectron. 24, 3269 (2009).

    Article  CAS  Google Scholar 

  16. X. Zuo, S. Song, J. Zhang, D. Pan, L. Wang, and C. Fan: A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129, 1042 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Soleymani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleymani, L. A new electronic assay enables ultrasensitive detection of diverse biological analytes—nucleic acids, proteins and small molecules—on a single integrated circuit. MRS Communications 2, 151–153 (2012). https://doi.org/10.1557/mrc.2012.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.24

Navigation