Skip to main content
Log in

Direct correlation of R-line luminescence with rod-like defect evolution in ion-implanted and annealed silicon

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A quantitative correlation between R-line luminescence at around 1.37 μm and {311} defect nature, size and concentration has been undertaken in silicon, following keV Si-implantation and subsequent annealing using photoluminescence spectroscopy and plan-view transmission electron microscopy. The formation and evolution of the rod-like defects were found to be dependent on annealing time at a temperature of 700 °C, but there was no simple correlation found between the density and size of those defects and the R-line intensity. In particular, whereas the presence of {311} defects is essential for observing R-line luminescence, both very small {311} defects at short annealing times and fully developed {311} defects at long annealing times do not contribute to such luminescence. We provide possible explanations for this behavior and suggest that the local (strain) environment around defects, the dopant level and impurities in the silicon substrate may all play a role in determining R-line intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table 1.

Similar content being viewed by others

References

  1. E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current, T. Diaz de la Rubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W. Magee, J.W. Mayer, J. Melngailis, and A.F. Tasch: Ion beams in silicon processing and characterization. J. Appl. Phys. 81, 6513 (1997).

    Article  CAS  Google Scholar 

  2. S. Libertino and A. La Magna: Damage formation and evolution in ion-implanted crystalline Si, in Materials Science with Ion Beams, Topics in Applied Physics Vol. 116, edited by H. Bernas (Springer-Verlag, Berlin, 2010), pp. 147–212.

    Article  CAS  Google Scholar 

  3. G. Davies: The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83 (1989).

    Article  CAS  Google Scholar 

  4. S. Charnvanichborikarn: Defect-Mediated Nanostructures and Luminescence Centres in Silicon. Ph.D. Thesis, The Australian National University (2011).

    Google Scholar 

  5. G. Davies, E.C. Lightowlers, and Z.E. Ciechanowska: The 1018 meV (W or I1) vibronic band in silicon. J. Phys. C 20, 191 (1987).

    Article  CAS  Google Scholar 

  6. B.J. Coomer, J.P. Goss, R. Jones, S. Öberg, and P.R. Briddon: Interstitial aggregates and a new model for the I1/W optical centre in silicon. Physica B 273–274, 505 (1999).

    Article  Google Scholar 

  7. P.K. Giri: Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon. Semicond. Sci. Technol. 20, 638 (2005).

    Article  CAS  Google Scholar 

  8. D.C. Schmidt, B.G. Svensson, M. Seibt, C. Jagadish, and G. Davies: Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon. J. Appl. Phys. 88, 2309 (2000).

    Article  CAS  Google Scholar 

  9. D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann, and J.M. Poate: Implantation and transient B diffusion in Si: the source of the interstitials. Appl. Phys. Lett. 65, 2305 (1994).

    Article  CAS  Google Scholar 

  10. Y. Yasutake, J. Igarashi, N. Tana-ami, and S. Fukatsu: An electric-field-active 1377-nm narrow-line Si light-emitting diode at 150 K. Opt. Express 17, 16739 (2009).

    Article  CAS  Google Scholar 

  11. M.D. Matthews and S.J. Ashby: The dynamic observation of the formation of defects in silicon under electron and proton irradiation. Philos. Mag. 27, 1313 (1973).

    Article  CAS  Google Scholar 

  12. S. Coffa, S. Libertino, and C. Spinella: Transition from small interstitial clusters to extended 311 defects in ion-implanted Si. Appl. Phys. Lett. 76, 321 (2000).

    Article  CAS  Google Scholar 

  13. P.K. Giri, S. Coffa, and E. Rimini: Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon. Appl. Phys. Lett. 78, 291 (2001).

    Article  CAS  Google Scholar 

  14. G. Davies, R. Harding, T. Jin, A. Mainwood, and J. Leung-Wong: Optical studies of ion-implantation centres in silicon. Nucl. Instrum. Methods Phys. Res. B 186, 1 (2001).

    Article  Google Scholar 

  15. C.T. Chou, D.J.H. Cockayne, J. Zou, P. Kringhøj, and C. Jagadish: 111 defects in 1-MeV-silicon-ion-implanted silicon. Phys. Rev. B 52, 17223 (1995).

    Article  CAS  Google Scholar 

  16. E.C. Lightowlers, L. Jeyanathan, A.N. Safonov, V. Higgs, and G. Davies: Luminescence from rod-like defects and hydrogen related centres in silicon. Mater. Sci. Eng., B 24, 144 (1994).

    Article  Google Scholar 

  17. J.P. Biersack and L.G. Haggmark: A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257 (1980).

    Article  CAS  Google Scholar 

  18. J. Wong-Leung, S. Fatima, C. Jagadish, J.D. Fitz Gerald, C.T. Chou, J. Zou, and D.J.H. Cockayne: Transmission electron microscopy characterization of secondary defects created by MeV Si, Ge, and Sn implantation in silicon. J. Appl. Phys. 88, 1312 (2000).

    Article  CAS  Google Scholar 

  19. S. Libertino, S. Coffa, C. Spinella, A. La Magna, and V. Privitera: Point defect diffusion and clustering in ion implanted c-Si. Nucl. Instrum. Methods Phys. Res. B 178, 25 (2001).

    CAS  Google Scholar 

  20. N.E.B. Cowern, G. Mannino, P.A. Stolk, F. Roozeboom, H.G.A. Huizing, J.G.M. van Berkum, F. Cristiano, A. Claverie, and M. Jaraíz: Energetics of self-interstitial clusters in Si. Phys. Rev. Lett. 82, 4460 (1999).

    Article  CAS  Google Scholar 

  21. H. Weman, B. Monemar, G.S. Oehrlein, and S.J. Jeng: Strain-induced quantum confinement of carriers due to extended defects in silicon. Phys. Rev. B 42, 3109 (1990).

    Article  CAS  Google Scholar 

  22. R.E. Harding, G. Davies, S. Hayama, P.G. Coleman, C.P. Burrows, and J. Wong-Leung: Photoluminescence response of ion-implanted silicon. Appl. Phys. Lett. 89, 181917 (2006).

    Article  Google Scholar 

  23. K. Moller, K.S. Jones, and M.E. Law: Cross-sectional transmission electron microscopy analysis of 311 defects from Si implantation into silicon. Appl. Phys. Lett. 72, 2547 (1998).

    Article  CAS  Google Scholar 

  24. P.A. Stolk, H.-J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraíz, J.M. Poate, H.S. Luftman, and T.E. Haynes: Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon. J. Appl. Phys. 81, 6031 (1997).

    Article  CAS  Google Scholar 

  25. G.Z. Pan and K.N. Tu: Transmission electron microscopy on 113 rodlike defects and 111 dislocation loops in silicon-implanted silicon. J. Appl. Phys. 82, 601 (1997).

    Article  CAS  Google Scholar 

  26. S. Takeda: An atomic model of electron-irradiation-induced defects on 113 in Si. Jpn. J. Appl. Phys. 30, L639 (1991).

    Article  CAS  Google Scholar 

  27. T.E. Haynes, D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann, D.C. Jacobson, and J.M. Poate: Interactions of ion-implantation-induced interstitials with boron at high concentrations in silicon. Appl. Phys. Lett. 69, 1376 (1996).

    Article  CAS  Google Scholar 

  28. R. Brindos, P. Keys, K.S. Jones, and M.E. Law: Effect of arsenic doping on 311 defect dissolution in silicon. Appl. Phys. Lett. 75, 229 (1999).

    Article  CAS  Google Scholar 

  29. V. Higgs, E.C. Lightowlers, C.E. Norman, and P. Kightley: Characterisation of dislocations in the presence of transition metal contamination. Mater. Sci. Forum 83–87, 1309 (1992).

    Article  Google Scholar 

  30. A.N. Tereshchenko, E.A. Steinman, and A.A. Mazilkin: Effect of copper on dislocation luminescence centers in silicon. Phys. Solid State 53, 369 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (S.C.) thanks Bianca Haberl for assistance in TEM sample preparation. This work was funded by the Australian Research Council. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charnvanichborikarn, S., Wong-Leung, J., Jagadish, C. et al. Direct correlation of R-line luminescence with rod-like defect evolution in ion-implanted and annealed silicon. MRS Communications 2, 101–105 (2012). https://doi.org/10.1557/mrc.2012.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.17

Navigation