Skip to main content
Log in

Preparation, microstructure, and microhardness of selective laser-melted W–3Ta sample

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Tungsten (W) alloy is of difficulty in processing for conventional way because of its high melting point. Here, W alloy sample with the addition of 3 wt% Ta was prepared by selective laser melting. The influence of volumetric energy density (VED) on the surface morphology and the relative density was discussed, and microstructure, phase composition, and microhardness were investigated. The results show that a smooth surface and high relative density (95.79%) can be obtained under optimal VED. The W–Ta substitutional solid solution formed because of the replacement of Ta atom. There are strip and block fine grains in the W–3Ta sample with no significant texture. In addition, subgrain structure with a size of around 1 µm formed inside the strip grain, owing to the large thermal gradient and extremely fast cooling rate. Finally, the W–3Ta alloy shows higher microhardness than that obtained by traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J.N. Brooks, L. El-Guebaly, A. Hassanein, and T. Sizyuk: Plasma-facing material alternatives to tungsten. Nucl. Fusion55, 043002 (2015).

    Article  Google Scholar 

  2. V. Philipps: Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater.415, S2–S9 (2011).

    Article  CAS  Google Scholar 

  3. J. Choi, H.M. Sung, K.B. Roh, S.H. Hong, G.H. Kim, and H.N. Han: Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability. Int. J. Refract. Metals Hard Mater.69, 164–169 (2017).

    Article  CAS  Google Scholar 

  4. N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam: Activated sintering of tungsten alloys through conventional and spark plasma sintering process. Mater. Manuf. Process.32, 1861–1868 (2017).

    Article  CAS  Google Scholar 

  5. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Review of selective laser melting: Materials and applications. Appl. Phys. Rev.2, 041101 (2015).

    Article  Google Scholar 

  6. A.M. Vilardell, A. Takezawa, A. du Plessis, N. Takata, P. Krakhmalev, M. Kobashi, and I. Yadroitsev: Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications. Mater. Sci. Eng., A766, 138330 (2019).

    Article  CAS  Google Scholar 

  7. R. Wauthle, J. Van Der Stok, S.A. Yavari, J. Van Humbeeck, J.P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, and J. Schrooten: Additively manufactured porous tantalum implants. Acta Biomater.14, 217–225 (2015).

    Article  CAS  Google Scholar 

  8. K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, and R. Van Holen: Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder. Med. Phys40, 012501 (2013).

    Article  Google Scholar 

  9. J. Braun, L. Kaserer, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, and G. Leichtfried: Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms. Int. J. Refract. Metals Hard Mater.84, 104999 (2019).

    Article  CAS  Google Scholar 

  10. D. Faidel, D. Jonas, G. Natour, and W. Behr: Investigation of the selective laser melting process with molybdenum powder. Addit. Manuf.8, 88–94 (2015).

    CAS  Google Scholar 

  11. K.H. Leitz, C. Grohs, P. Singer, B. Tabernig, A. Plankensteiner, H. Kestler, and L.S. Sigl: Fundamental analysis of the influence of powder characteristics in selective laser melting of molybdenum based on a multi-physical simulation model. Int. J. Refract. Metals Hard Mater.72, 1–8 (2018).

    Article  CAS  Google Scholar 

  12. D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen: Densification and crack suppression in selective laser melting of pure molybdenum. Mater. Des.129, 44–52 (2017).

    Article  CAS  Google Scholar 

  13. L. Kaserer, J. Braun, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, I. Letofsky-Papst, H. Kestler, and G. Leichtfried: Fully dense and crack free molybdenum manufactured by selective laser melting through alloying with carbon. Int. J. Refract. Metals Hard Mater.84, 105000 (2019).

    Article  CAS  Google Scholar 

  14. L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, and K. Guo: Selective laser melting of pure tantalum: Densification, microstructure, and mechanical behaviors. Mater. Sci. Eng., A707, 443–451 (2017).

    Article  CAS  Google Scholar 

  15. R.K. Enneti, R. Morgan, and S.V. Atre: Effect of process parameters on the selective laser melting (SLM) of tungsten. Int. J. Refract. Metals Hard Mater.71, 315–319 (2018).

    Article  CAS  Google Scholar 

  16. D. Zhang, Q. Cai, and J. Liu: Formation of nanocrystalline tungsten by selective laser melting of tungsten powder. Mater. Manuf. Process.27, 1267–1270 (2012).

    Article  CAS  Google Scholar 

  17. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu: Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol.222, 33–42 (2015).

    Article  CAS  Google Scholar 

  18. C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, and T. Kuang: Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior, and mechanical properties. Sci. Technol. Adv. Mater.19, 370–380 (2018).

    Article  CAS  Google Scholar 

  19. S. Wen, C. Wang, Y. Zhou, L. Duan, Q. Wei, S. Yang, and Y. Shi: High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical, and thermal performance. Opt. Laser Technol.116, 128–138 (2019).

    Article  CAS  Google Scholar 

  20. M. Guo, D. Gu, L. Xi, L. Du, H. Zhang, and J. Zhang: Formation of scanning tracks during selective laser melting (SLM) of pure tungsten powder: Morphology, geometric features, and forming mechanisms. Int. J. Refract. Metals Hard Mater.79, 37–46 (2019).

    Article  CAS  Google Scholar 

  21. M. Guo, D. Gu, L. Xi, H. Zhang, J. Zhang, J. Yang, and R. Wang: Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure, and mechanical properties. Int. J. Refract. Metals Hard Mater.84, 105025 (2019).

    Article  CAS  Google Scholar 

  22. A.T. Sidambe, Y. Tian, P.B. Prangnell, and P. Fox: Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int. J. Refract. Metals Hard Mater.78, 254–263 (2019).

    Article  CAS  Google Scholar 

  23. D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, and Z. Shen: Dense pure tungsten fabricated by selective laser melting. Appl. Sci.7, 430 (2017).

    Article  Google Scholar 

  24. D. Wang, K. Li, C. Yu, J. Ma, W. Liu, and Z. Shen: Cracking behavior in additively manufactured pure tungsten. Acta Metall. Sin.32, 127–135 (2019).

    Article  CAS  Google Scholar 

  25. A.V. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, and C. Seidel: Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 °C. Nucl. Mater. Energy19, 184–188 (2019).

    Article  Google Scholar 

  26. D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, and Z. Shen: Cracking in laser additively manufactured W: Initiation mechanism and a suppression approach by alloying. Mater. Des.162, 384–393 (2019).

    Article  CAS  Google Scholar 

  27. J. Liu, Y. Zhou, Y. Fan, and X. Chen: Effect of laser hatch style on densification behavior, microstructure, and tribological performance of aluminum alloys by selective laser melting. J. Mater. Res.33, 1713–1722 (2018).

    Article  CAS  Google Scholar 

  28. S. Tamura, K. Tokunaga, N. Yoshida, M. Taniguchi, K. Ezato, K. Sato, S. Suzuki, M. Akiba, Y. Tsunekawa, and M. Okumiya: Damage process of high purity tungsten coatings by hydrogen beam heat loads. J. Nucl. Mater.337, 1043–1047 (2005).

    Article  Google Scholar 

  29. X. Chong, M. Hu, P. Wu, Q. Shan, Y. Jiang, and J. Feng: Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M = Fe, Cr, W, Mo; X = C, B) by multialloying. Acta Mater.169, 193–208 (2019).

    Article  CAS  Google Scholar 

  30. C. Hu, Y.X. Xu, L. Chen, F. Pei, and Y. Du: Mechanical properties, thermal stability, and oxidation resistance of Ta-doped CrAlN coatings. Surf. Coat. Technol.368, 25–32 (2019).

    Article  CAS  Google Scholar 

  31. Z. Wang, Y. Yuan, K. Arshad, J. Wang, Z. Zhou, J. Tang, and G. Lu: Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys. Fusion Eng. Des.125, 496–502 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was founded by Science Challenge Project (Grant No. TZ2018006-0301-01), Guangdong Scientific and Technological Project (Grant No. 2017B090911015), and Dongguan University of Technology High-level Talents (Innovation Team) Research Project (KCYCXPT2016003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wei, Z., Zhou, B. et al. Preparation, microstructure, and microhardness of selective laser-melted W–3Ta sample. Journal of Materials Research 35, 2016–2024 (2020). https://doi.org/10.1557/jmr.2020.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.71

Navigation