Skip to main content
Log in

Characterization of polymer materials using magnetic levitation

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The quality of the polymer raw material used in plastic processing methods is an important characteristic because it is one of the main factors in producing quality products. Therefore, the characterization of polymeric pellets in the polymer processing industry is very important to avoid using inferior materials. In general, differences in the interiors of polymeric pellets reflect differences in their densities. In this study, a high-sensitivity magnetic levitation method was used to characterize the polymeric pellets in four different occasions. The device used has a high sensitivity that can distinguish minute differences as small as of 0.0041 g/cm3 in density between different samples. In addition, the method can obtain a sample’s density without knowing the weight and volume of the sample. This method can be used to characterize materials by testing only a single pellet, which is very useful for polymeric pellet characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Y. Zhang, P-Y. Ben Jar, S. Xue, and L. Li: Quantification of strain-induced damage in semi-crystalline polymers: A review. J. Mater. Sci. 54, 62–82 (2019).

    Article  CAS  Google Scholar 

  2. M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S.V. Lomov: Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 53, 1579–1669 (2019).

    Article  CAS  Google Scholar 

  3. M. Aurilia, F. Piscitelli, L. Sorrentino, M. Lavorgna, and S. Iannace: Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. Eur. Polym. J. 47, 925–936 (2011).

    Article  CAS  Google Scholar 

  4. D. Sheng, J. Tan, X. Liu, P. Wang, and Y. Yang: Effect of organoclay with various organic modifiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/organoclay nanocomposites. J. Mater. Sci. 46, 6508–6517 (2011).

    Article  CAS  Google Scholar 

  5. S.Y. Fu, B. Lauke, E. Mäder, C.Y. Yue, and X. Hu: Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites, Part A 31, 1117–1125 (2000).

    Article  Google Scholar 

  6. R. Satheesh Raja, K. Manisekar, and V. Manikandan: Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis. Mater. Des. 55, 499–508 (2014).

    Article  Google Scholar 

  7. J. Ha, S. Chae, K.W. Chou, T. Tyliszczak, and P.J.M. Monteiro: Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: A scanning transmission X-ray microscopy study. J. Mater. Sci. 47, 976–989 (2012).

    Article  CAS  Google Scholar 

  8. A. Eyvazzadeh Kalajahi, M. Rezaei, and F. Abbasi: Preparation, characterization, and thermo-mechanical properties of poly(ε-caprolactone)-piperazine-based polyurethane-urea shape memory polymers. J. Mater. Sci. 51, 4379–4389 (2016).

    Article  Google Scholar 

  9. K. Hamad, M. Kaseem, and F. Deri: Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. J. Mater. Sci. 46, 3013–3019 (2011).

    Article  CAS  Google Scholar 

  10. J.M. Schultz: Microstructural aspects of failure in semicrystalline polymers. Polym. Eng. Sci. 24, 770–785 (1984).

    Article  CAS  Google Scholar 

  11. K.A. Mirica, S.S. Shevkoplyas, S.T. Phillips, M. Gupta, and G.M. Whitesides: Measuring densities of solids and liquids using magnetic levitation: Fundamentals. J. Am. Chem. Soc. 131, 10049–10058 (2009).

    Article  CAS  Google Scholar 

  12. Q-H. Gao, W-B. Li, H-X. Zou, H. Yan, Z-K. Peng, G. Meng, and W-M. Zhang: A centrifugal magnetic levitation approach for high-reliability density measurement. Sens. Actuators, B 287, 64–70 (2019).

    Article  CAS  Google Scholar 

  13. A. Nemiroski, S. Soh, S.W. Kwok, H.D. Yu, and G.M. Whitesides: Tilted magnetic levitation enables measurement of the complete range of densities of materials with low magnetic permeability. J. Am. Chem. Soc. 138, 1252 (2016).

    Article  CAS  Google Scholar 

  14. K.A. Mirica, S.T. Phillips, C.R. Mace, and G.M. Whitesides: Magnetic levitation in the analysis of foods and water. J. Agric. Food Chem. 58, 6565–6569 (2010).

    Article  CAS  Google Scholar 

  15. M.R. Lockett, K.A. Mirica, C.R. Mace, R.D. Blackledge, and G.M. Whitesides: Analyzing forensic evidence based on density with magnetic levitation. J. Forensic Sci. 58, 40–45 (2013).

    Article  Google Scholar 

  16. Q-H. Gao, W-M. Zhang, H-X. Zou, W-B. Li, H. Yan, Z-K. Peng, and G. Meng: Label-free manipulation via the magneto-archimedes effect: Fundamentals, methodology, and applications. Mater. Horiz. 6, 1359–1379 (2019).

    Article  CAS  Google Scholar 

  17. S. Ge, A. Nemiroski, K.A. Mirica, C.R. Mace, J.W. Hennek, A.A. Kumar, and G.M. Whitesides: Magnetic levitation in chemistry, materials science, and biochemistry. Angew. Chem. (2019). doi: https://doi.org/10.1002/anie.201903391.

    Google Scholar 

  18. S. Tasoglu, C.H. Yu, H.I. Gungordu, S. Guven, T. Vural, and U. Demirci: Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 5, 4702 (2014).

    Article  CAS  Google Scholar 

  19. B. Yenilmez, S. Knowlton, and S. Tasoglu: Self-contained handheld magnetic platform for point of care cytometry in biological samples. Adv. Mater. Technol. 1, 1600144 (2016).

    Article  Google Scholar 

  20. S. Knowlton, C.H. Yu, N. Jain, I.C. Ghiran, and S. Tasoglu: Smart-Phone based magnetic levitation for measuring densities. PLoS One 10, 8 (2015).

    Article  Google Scholar 

  21. S. Knowlton, A. Joshi, P. Syrrist, A.F. Coskun, and S. Tasoglu: 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip 17, 2839 (2017).

    Article  CAS  Google Scholar 

  22. R. Amin, S. Knowlton, B. Yenilmes, A. Hart, A. Joshi, and S. Tasoglu: Smart-phone attachable, flow-assisted magnetic focusing device. RSC Adv. 6, 93922 (2016).

    Article  CAS  Google Scholar 

  23. C. Zhang, P. Zhao, F. Gu, J. Xie, N. Xia, Y. He, and J. Fu: Single-ring magnetic levitation configuration for object manipulation and density-based measurement. Anal. Chem. 90, 9226–9233 (2018).

    Article  CAS  Google Scholar 

  24. J. Xie, C. Zhang, F. Gu, Y. Wang, J. Fu, and P. Zhao: An accurate and versatile density measurement device: Magnetic levitation. Sens. Actuators, B 295, 204–214 (2019).

    Article  CAS  Google Scholar 

  25. J. Xie, P. Zhao, Z. Jing, C. Zhang, N. Xia, and J. Fu: Research on the sensitivity of magnetic levitation (MagLev) devices. J. Magn. Magn. Mater. 468, 100–104 (2018).

    Article  CAS  Google Scholar 

  26. J. Xie, P. Zhao, C. Zhang, and J. Fu: Measuring densities of polymers by magneto-archimedes levitation. Polym. Test. 56, 308–313 (2016).

    Article  CAS  Google Scholar 

  27. P. Zhao, J. Xie, J. Zhang, C. Zhang, N. Xia, and J. Fu: Evaluation of polymer injection molded parts via density-based magnetic levitation. J. Appl. Polym. Sci. 137, 48431 (2020).

    Article  CAS  Google Scholar 

  28. N. Xia, P. Zhao, J. Xie, C. Zhang, J. Fu, and L-S. Turng: Defect diagnosis for polymeric samples via magnetic levitation. NDT&E Int. 100, 175–182 (2018).

    Article  CAS  Google Scholar 

  29. P. Zhao, J. Xie, F. Gu, N. Sharmin, P. Hall, and J. Fu: Separation of mixed waste plastics via magnetic levitation. Waste Manage. 76, 46–54 (2018).

    Article  CAS  Google Scholar 

  30. X. Zhang, F. Gu, J. Xie, C. Zhang, J. Fu, and P. Zhao: Magnetic projection: A novel separation method and its first application on separating mixed plastics. Waste Manage. 87, 805–813 (2019).

    Article  CAS  Google Scholar 

  31. J. Xie, P. Zhao, C. Zhang, Y. Hao, N. Xia, and J. Fu: A feasible, portable and convenient density measurement method for minerals via magnetic levitation. Measurement 136, 564–572 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from the Key Research and Development Plan of Zhejiang Province (No. 2020C01113), the National Natural Science Foundation Council of China (Nos. 51821093, 51875519, and 51635006), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ18E050002). The authors would also like to acknowledge the support of the Wisconsin Institute for Discovery, the China Scholarship Council, and the 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhao.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhao, P., Zhang, J. et al. Characterization of polymer materials using magnetic levitation. Journal of Materials Research 35, 1182–1189 (2020). https://doi.org/10.1557/jmr.2020.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.61

Navigation