Skip to main content
Log in

Nanostructure morphology influences in electrical properties of titanium dioxide thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) is a semiconductor that can be applied in different technological areas. In this work, we investigated the modifications of the electrical properties of thin films composed of TiO2 nanoparticles produced with different morphologies. The solvothermal route used for the synthesis allowed the production of nanoparticles with functionalized surfaces due to oleate groups. It was possible to modulate nanocrystals shape and size due to the detachment crystal growth mechanism, by changing the reaction time. Nanorods were obtained using 4 h of synthesis, and an increase in the reaction time to 64 h led to a bipyramidal morphology. The functionalization by the organic ligand allowed the preparation of stable colloidal solutions, which were used to prepare thin films by the dip-coating method. The films presented a homogeneous surface, an average thickness around 100 nm, and no agglomerations were observed. The electrical resistance measurements indicated a typical behavior of semiconductors, and they were dependent on the nanoparticle morphology. An exploratory test indicated that the thin films prepared using nanorod particles presented a higher electrical response compared with isotropic particles, when exposed in a liquefied petroleum gas vapor atmosphere. Therefore, the morphology of the nanoparticles is a key factor for the further application of these thin films in gas sensing. Employing an easy methodology which required simple apparatus, and by using reaction time modulation only, it was possible to prepare homogeneous thin films with a tunable electrical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
TABLE 1:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. M.S. Ahmad, A.K. Pandey, and N.A. Rahim: Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 77, 89 (2017).

    Article  CAS  Google Scholar 

  2. L. Xu, J. Xu, H. Hu, C. Cui, Z. Ding, Y. Yan, P. Lin, and P. Wang: Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells. J. Alloys Compd. 776, 1002 (2019).

    Article  CAS  Google Scholar 

  3. G. Kenanakis, D. Vernardou, A. Dalamagkas, and N. Katsarakis: Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol–gel. Catal. Today 240, 146 (2015).

    Article  CAS  Google Scholar 

  4. J. Singh, S.A. Khan, J. Shah, R. Kotnala, and S. Mohapatra: Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl. Surf. Sci. 422, 953 (2017).

    Article  CAS  Google Scholar 

  5. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li, and H. Li: GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35, 1307 (2020).

    Article  CAS  Google Scholar 

  6. N.T.T. Thuy, D.H. Tung, L.H. Manh, J.H. Kim, S.I. Kudryashov, and P.H.J.A.S. Minh: Plasma enhanced wet chemical surface activation of TiO2 for the synthesis of high performance photocatalytic Au/TiO2 nanocomposites. Appl. Sci. 10, 3345 (2020).

    Article  CAS  Google Scholar 

  7. V. Galstyan: Porous TiO2-based gas sensors for cyber chemical systems to provide security and medical diagnosis. Sensors 17, 2947 (2017).

    Article  CAS  Google Scholar 

  8. X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov, and S. Akbar: Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuat., B 230, 330 (2016).

    Article  CAS  Google Scholar 

  9. J. Bai and B. Zhou: Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114, 10131 (2014).

    Article  CAS  Google Scholar 

  10. E. Bayan, T. Lupeiko, L. Pustovaya, M. Volkova, V. Butova, and A. Guda: Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J. Alloys Compd. 822, 153662 (2020).

    Article  CAS  Google Scholar 

  11. J. Huang and Q. Wan: Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9, 9903 (2009).

    Article  Google Scholar 

  12. G. Korotcenkov: Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng., B 139, 1 (2007).

    Article  CAS  Google Scholar 

  13. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao: Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10, 2088 (2010).

    Article  CAS  Google Scholar 

  14. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  15. D.-S. Lee, D.-D. Lee, S.-W. Ban, M. Lee, and Y.T. Kim: SnO2 gas sensing array for combustible and explosive gas leakage recognition. IEEE Sens. J. 2, 140 (2002).

    Article  CAS  Google Scholar 

  16. K.R. Nemade, R.V. Barde, and S.A. Waghuley: Liquefied petroleum gas sensing by Al-doped TiO2 nanoparticles synthesized by chemical and solid-state diffusion routes. J. Taibah Univ. Sci. 10, 345 (2015).

    Article  Google Scholar 

  17. N. Liu, X. Chen, J. Zhang, and J.W. Schwank: A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34 (2014).

    Article  CAS  Google Scholar 

  18. C.J. Dalmaschio and E.R. Leite: Detachment induced by Rayleigh-instability in metal oxide nanorods: Insights from TiO2. Cryst. Growth Des. 12, 3668 (2012).

    Article  CAS  Google Scholar 

  19. A.M. Alotaibi, S. Sathasivam, B.A. Williamson, A. Kafizas, C. Sotelo-Vazquez, A. Taylor, D.O. Scanlon, and I.P. Parkin: Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films. Chem. Mater. 30, 1353 (2018).

    Article  CAS  Google Scholar 

  20. A.K. Haridas, B. Gangaja, P. Srikrishnarka, G.E. Unni, A.S. Nair, S.V. Nair, and D. Santhanagopalan: Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. J. Power Sources 345, 50 (2017).

    Article  CAS  Google Scholar 

  21. A.C. Martins, A.L. Cazetta, O. Pezoti, J.R. Souza, T. Zhang, E.J. Pilau, T. Asefa, and V.C. Almeida: Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 43, 4411 (2017).

    Article  CAS  Google Scholar 

  22. D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, and R. Martins: Chapter 2—Synthesis, Design, and Morphology of Metal Oxide Nanostructures (Elsevier, Amsterdam, Netherlands, 2019); pp. 21–57.

    Google Scholar 

  23. M. Zimmermann, B. Temel, and G. Garnweitner: Parameter studies of the synthesis of titanium dioxide nanoparticles: Effect on particle formation and size. Chem. Eng. Process. 74, 83 (2013).

    Article  CAS  Google Scholar 

  24. M.S. Santos, J.C. Freitas, and C.J. Dalmaschio: Designed single-phase ZrO2 nanocrystals obtained by solvothermal syntheses. CrystEngComm 22, 1802 (2020).

    Article  CAS  Google Scholar 

  25. E. Scopel, P.P. Conti, D.G. Stroppa, and C.J. Dalmaschio: Synthesis of functionalized magnetite nanoparticles using only oleic acid and iron (III) acetylacetonate. SN Appl. Sci. 1, 147 (2019).

    Article  CAS  Google Scholar 

  26. C.-S. Kim, B.K. Moon, J.-H. Park, S.T. Chung, and S.-M. Son: Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. J. Cryst. Growth 254, 405 (2003).

    Article  CAS  Google Scholar 

  27. M. Niederberger and N. Pinna: Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Springer Science & Business Media, London, United Kingdom, 2009).

    Book  Google Scholar 

  28. G. Demazeau and A. Largeteau: Hydrothermal/solvothermal crystal growth: An old but adaptable process. Z. Anorg. Allg. Chem. 641, 159 (2015).

    Article  CAS  Google Scholar 

  29. Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, and A. Li: Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 360, 298 (2016).

    Article  CAS  Google Scholar 

  30. L. Eckertová: Mechanism of Film Formation, in Physics of Thin Films (Springer, New York City, USA, 1977), p. 72.

    Book  Google Scholar 

  31. K.L. Chopra and I. Kaur: Thin Film Phenomena (McGraw-hill, New York, 1969).

    Google Scholar 

  32. R. Ortega-Borges and D. Lincot: Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system: In situ kinetic study and modelization. J. Electrochem. Soc. 140, 3464 (1993).

    Article  CAS  Google Scholar 

  33. A. Chatterjee, P. Mitra, and A.K. Mukhopadhyay: Chemically deposited zinc oxide thin film gas sensor. J. Mater. Sci. 34, 4225 (1999).

    Article  CAS  Google Scholar 

  34. S.S. Lin, A. Hsieh, D.B. Min, and S.S. Chang: A study of the color stability of commercial oleic acid. J. Am. Oil Chem. Soc. 53, 157 (1976).

    Article  CAS  Google Scholar 

  35. C. Jia, T. Dong, M. Li, P. Wang, and P. Yang: Preparation of anatase/rutile TiO2/SnO2 hollow heterostructures for gas sensor. J. Alloys Compd. 769, 521 (2018).

    Article  CAS  Google Scholar 

  36. Y. Wang, T. Wu, Y. Zhou, C. Meng, W. Zhu, and L. Liu: TiO2-based nanoheterostructures for promoting gas sensitivity performance: Designs, developments, and prospects. Sensors 17, 1971 (2017).

    Article  CAS  Google Scholar 

  37. B.L. Cushing, V.L. Kolesnichenko, and C.J. O'Connor: Recent advances in the liquid-phase syntheses of Inorganic nanoparticles. Chem. Rev. 104, 3893 (2004).

    Article  CAS  Google Scholar 

  38. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, and F. Lévy: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).

    Article  CAS  Google Scholar 

  39. A. Hastir, N. Kohli, O.S. Kang, and R.C. Singh: Selective liquefied petroleum gas sensor based on nanocomposites of zinc chromium oxide. J. Electroceram. 37, 170 (2016).

    Article  CAS  Google Scholar 

  40. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.-F. Kang, and W. Chen: CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta 188, 41 (2018).

    Article  CAS  Google Scholar 

  41. N. Chen, Y. Li, D. Deng, X. Liu, X. Xing, X. Xiao, and Y. Wang: Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens. Actuat., B 238, 491 (2017).

    Article  CAS  Google Scholar 

  42. D. Mardare, N. Iftimie, and D. Luca: TiO2 thin films as sensing gas materials. J. Non-Cryst. Solids 354, 4396 (2008).

    Article  CAS  Google Scholar 

  43. S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou, L. Wang, and X. Zhang: Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975 (2015).

    Article  CAS  Google Scholar 

  44. F. Sánchez, U. Lüders, G. Herranz, I. Infante, J. Fontcuberta, M. García-Cuenca, C. Ferrater, and M. Varela: Self-organization in complex oxide thin films: From 2D to 0D nanostructures of SrRuO3 and CoCr2O4. Nanotechnology 16, S190 (2005).

    Article  CAS  Google Scholar 

  45. C.J. Dalmaschio, E.G. da Silveira Firmiano, A.N. Pinheiro, D.G. Sobrinho, A.F. de Moura, and E.R. Leite: Nanocrystals self-assembled in superlattices directed by the solvent–organic capping interaction. Nanoscale 5, 5602 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes), and Federal University of Espírito Santo (Ufes) for the research funding and the scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleocir José Dalmaschio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalmaschio, C.J., Conti, P.P., Scopel, E. et al. Nanostructure morphology influences in electrical properties of titanium dioxide thin films. Journal of Materials Research 35, 3012–3020 (2020). https://doi.org/10.1557/jmr.2020.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.235

Navigation