Skip to main content
Log in

Facile synthesis of SnO2 nanopowders on laser-patterned ITO electrodes for fast response NO2 gas sensors

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research focused on the synthesis of tin oxide (SnO2) by a facile sol–gel method because its advantage had a low-cost process. SnO2 was then annealed from 300℃ to 700℃ to obtain crystal nanopowders with different surface morphologies and grain sizes. In addition, ultraviolet laser processing equipment was used to fabricate an interdigitated structure on indium tin oxide (ITO) films coated on glass plates as an electrode layer of gas sensors. The annealed SnO2 nanopowder was drop-cast on the interdigitated ITO electrode as a gas detection layer. The developed gas sensors were used to detect air pollution. Moreover, a SEM, an XRD, and a four-point probe were applied to measure the morphologies, structural characteristics, and electrical properties of ITO thin films and SnO2 nanopowders, respectively. After gas detection tests, the gas sensor based on SnO2 nanopowders annealed at 600 ℃ demonstrated a relatively large response of 9.7% and fast response and recovery times of 12 s and 16 s. Furthermore, the SnO2 nanopowder-based gas sensor at a NO2 concentration of 5 ppm had better repeatability with an average response of 9.57 ± 0.22% after the 11-cycle test and an excellent sensitivity to NO2 compared to the gases CO2, H2, NO, CO, and NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Chou CY, Tseng SF, Chang TL, Tu CT, Han HC (2020) Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection. Appl Surf Sci 508:145204

    Article  Google Scholar 

  2. Bharathi P, Harish S, Mathankumar G, Krishna Mohan M, Archana J, Kamalakannan S, Prakash M, Shimomura M, Navaneethan M (2022) Solution processed edge activated Ni-MoS2 nanosheets for highly sensitive room temperature NO2 gas sensor applications. Appl Surf Sci 600:154086

    Article  Google Scholar 

  3. Peng Z, Tao LQ, Zou S, Zhu C, Wang G, Sun H, Ren TL (2022) A multi-functional NO2 gas monitor and self-alarm based on laser-induced graphene. Chem Eng J 428:131097

    Article  Google Scholar 

  4. Yang CR, Cheng PW, Tseng SF (2023) Highly responsive and selective NO2 gas sensors based on titanium metal organic framework (Ti-MOF) with pyromellitic acid. Sens Actuators A: Phys 620:156847

    Google Scholar 

  5. Shin W, Hong S, Jeong Y, Jung G, Park J, Kim D, Choi K, Shin H, Koo RH, Kim JJ, Lee JH (2023) Low-frequency noise in gas sensors: A review. Sens Actuators B: Chem 383:133551

    Article  Google Scholar 

  6. Wei T, Li W, Zhang J, Xie X (2023) Synthesis of Tb2O3/ZnO composite nanofibers via electrospinning as chemiresistive gas sensor for detecting NO gas. J Alloys Compd 947:169651

    Article  Google Scholar 

  7. Qin Z, Wu Z, Sun Q, Sun J, Zhang M, Shaymurat T, Lv C, Duan H (2023) Biomimetic gas sensor derived from disposable bamboo chopsticks for highly sensitive and selective detection of NH3. Chem Eng J 462:142203

    Article  Google Scholar 

  8. Kim JH, Sakaguchi I, Hishita S, Ohsawa T, Suzuki TT, Saito N (2023) Self-heated CO gas sensor based on Au-decorated Sb-implanted WS2 nanosheets. Sens Actuators B: Chem 382:133501

    Article  Google Scholar 

  9. Absalan S, Nasresfahani S, Sheikhi MH (2019) High-performance carbon monoxide gas sensor based on palladium/tin oxide/porous graphitic carbon nitride nanocomposite. J Alloy Compd 795:79–90

    Article  Google Scholar 

  10. Liu N, Li Y, Li Y, Cao L, Nan N, Li C, Yu L (2021) Tunable NH4F-assisted synthesis of 3D Porous In2O3 microcubes for outstanding NO2 Gas-sensing performance: fast equilibrium at high temperature and resistant to humidity at room temperature. ACS Appl Mater Interfaces 13:14355–14364

    Article  Google Scholar 

  11. He T, Liu W, Lv T, Ma M, Liu Z, Vasiliev A, Li X (2021) MXene/SnO2 heterojunction based chemical gas sensors. Sens Actuators B: Chem 329:129275

    Article  Google Scholar 

  12. Hong HS, Ha NH, Thinh DD, Nam NH, Huong NT, Thi Hue N, Hoang TV (2021) Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network. Nano Energy 87:106165

    Article  Google Scholar 

  13. Lin Y, Jin W, Yang F, Ma J, Wang C, Ho HL, Liu Y (2016) Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre. Sci Rep 6:39410

    Article  Google Scholar 

  14. Tan Y, Huang T, Sun LP, Jiang S, Liu Y, Guan BO, Jin W (2023) Dispersion turning point-enhanced photothermal interferometry gas sensor with an optical microfiber interferometer. Sens Actuators B: Chem 385:133690

    Article  Google Scholar 

  15. Lin S, Zhou Y, Hu J, Sun Z, Zhang T, Wang M (2022) Exploration for a BP-ANN model for gas identification and concentration measurement with an ultrasonically radiated catalytic combustion gas sensor. Sens Actuators B: Chem 362:131733

    Article  Google Scholar 

  16. Paliwal A, Sharma A, Tomar M, Gupta V (2017) Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sens Actuators B: Chem 250:679–685

    Article  Google Scholar 

  17. Taravideh K, Parvizi R, Sadeghi E (2023) Efficient all-optical MoS2/Au hybrid plasmon-exciton competitive response towards selective gas sensors. Photon Nanostruct - Fundam Appl 54:101131

    Article  Google Scholar 

  18. Raza M, Chen Y, Trapp J, Sun H, Huang X, Ren W (2023) Smoldering peat fire detection by time-resolved measurements of transient CO2 and CH4 emissions using a novel dual-gas optical sensor. Fuel 334:126750

    Article  Google Scholar 

  19. Farquhar AK, Henshaw GS, Williams DE (2023) Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors. Sens Actuators A: Phys 354:114254

    Article  Google Scholar 

  20. Zhu L, Rong Q, Tong Y, Yang Z, Li R, Zheng J, Wang C, Guo Y (2023) Effect of calcination temperature on sensing performance of YSZ based electrochemical H2S gas sensor with a NiFe2O4 electrode. Sens Actuators A: Phys 353:114204

    Article  Google Scholar 

  21. Jantawong N, Prasertying P, Wongpakdee T, Khoonrueng N, Aroonchat P, Fukana N, Wilairat P, Uraisin K, Nacapricha D (2023) Absorption of sulfur dioxide gas in moistened porous material on a suspended gold leaf electrochemical sensor. Sens Actuators B: Chem 385:133634

    Article  Google Scholar 

  22. Naz S, Javid I, Konwar S, Singh PK, Sahni M, Bhattacharya B (2022) Solid state gas sensor. Mater Today: Proc 49(8):3245–3249

    Google Scholar 

  23. Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B: Chem 244:182–210

    Article  Google Scholar 

  24. Sowmya B, John A, Panda PK (2021) A review on metal-oxide based p-n and n-n heterostructured nano-materials for gas sensing applications. Sens Int 2:100085

    Article  Google Scholar 

  25. Uma S, Shobana MK (2023) Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring. Sens Actuators A: Phys 349:114044

    Article  Google Scholar 

  26. Domènech-Gil G, Samà J, Fàbrega C, Gràcia I, Cané C, Barth S, Romano-Rodríguez A (2023) Highly sensitive SnO2 nanowire network gas sensors. Sens Actuators B: Chem 383:133545

    Article  Google Scholar 

  27. Bilge S, Topal BD, Caglayan MG, Unal MA, Nazır H, Atici EB, Sınağ A, Ozkan SA (2023) SnO2 nanoparticles/waste masks carbon hybrid materials for DNA biosensor application on voltammetric detection of anti-cancer drug pazopanib. Bioelectrochemistry 150:108329

    Article  Google Scholar 

  28. Pan S, Gayathri G, Reshma T, Mangamma G, Prasad AK, Das A (2022) A sensitive humidity sensor at low pressure with SnO2 QDs. Sens Actuators A: Phys 346:113835

    Article  Google Scholar 

  29. Muthulakshmi G, Ismail MM, Ramya R, Arivanandhan M, Arjunan S, Bhaskaran A (2022) Facile preparation of SnO2/MoS2 nanocomposites with high electrochemical performance for energy storage applications. Inorg Chem Commun 143:109802

    Article  Google Scholar 

  30. Qiu L, Mei D, Chen W-H, Yuan Y, Song L, Chen L, Bai B, Du P, Xiong J (2022) Organic-inorganic hybrid electron transport layer of PVP-doped SnO2 for high-efficiency stable perovskite solar cells. Sol Energy Mater Sol Cells 248:112032

    Article  Google Scholar 

  31. Nguyen TK, Yu SH, Yan J, Chua DH (2020) SnO2-anchored carbon fibers chemical vapor deposition (CVD) synthesis: effects of growth parameters on morphologies and electrochemical behaviors. J Mater Sci 55(32):15588–15601

    Article  Google Scholar 

  32. Tao Y, Zhu B, Yang Y, Wu J, Shi X (2020) The structural, electrical, and optical properties of SnO2 films prepared by reactive magnetron sputtering: Influence of substrate temperature and O2 flow rate. Mater Chem Phys 250:123129

    Article  Google Scholar 

  33. Koroglu L, Aciksari C, Ayas E, Ozel E, Suvaci E (2022) A comparative study of spark plasma and conventional sintering of undoped SnO2 sputtering targets. Mater Chem Phys 290:126624

    Article  Google Scholar 

  34. Cai H, Qiao X, Chen M, Feng D, Alghamdi AA, Alharthi FA, Pan Y, Zhao Y, Zhu Y, Deng Y (2021) Hydrothermal synthesis of hierarchical SnO2 nanomaterials for high-efficiency detection of pesticide residue. Chin Chem Lett 32(4):1502–1506

    Article  Google Scholar 

  35. Gnanam S, Rajendran V (2010) Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties. J Sol-Gel Sci Technol 56(2):128–133

    Article  Google Scholar 

  36. Sharma B, Sharma A, Myung J-H (2021) Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens Actuators B: Chem 331:129464

    Article  Google Scholar 

  37. Gasso S, Sohal MK, Mahajan A (2022) MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sens Actuators B: Chem 357:131427

    Article  Google Scholar 

  38. Liang D, Song P, Liu M, Wang Q (2022) 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites for detection of triethylamine at low temperature. Ceram Int 48(7):9059–9066

    Article  Google Scholar 

  39. Al-Jawad SMH (2017) Influence of multilayer deposition on characteristics of nanocrystalline SnO2 thin films produce by sol-gel technique for gas sensor application. Optik 146:17–26

    Article  Google Scholar 

  40. Tseng SF, Huang CC (2021) Investigation of interactions between high pulsed ultraviolet lasers and composite graphene/AgNWs films. Appl Surf Sci 570:151060

    Article  Google Scholar 

  41. Tseng SF, Tsai YS (2022) Highly sensitive humidity sensors based on Li-C3N4 composites on porous graphene flexible electrodes. Appl Surf Sci 606:155001

    Article  Google Scholar 

  42. Tseng SF, Chen PS, Hsu SH, Hsiao WT, Peng WJ (2023) Investigation of fiber laser-induced porous graphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gas sensors. Appl Surf Sci 620:156847

    Article  Google Scholar 

  43. Dontsova TA, Nagirnyak SV, Zhorov VV, Yasiievych YV (2017) SnO2 nanostructures: effect of processing parameters on their structural and functional properties. Nanoscale Res Lett 12:332

    Article  Google Scholar 

  44. Zhou L, Hu Z, Wang P, Gao N, Zhai B, Ouyang M, Zhang G, Chen B, Luo J, Jiang S, Li HY, Liu H (2022) Enhanced NO2 sensitivity of SnO2 SAW gas sensors by facet engineering. Sens Actuators B: Chem 361:131735

    Article  Google Scholar 

  45. Gaber A, Abdel-Rahim M, Abdel-Latief A, Abdel-Salam MN (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9(1):81–95

    Article  Google Scholar 

  46. Andrievski RA, Khatchoyan AV (2016) Nanomaterials in extreme environments. Springer series in materials science 230:7–25

  47. Thirumoorthi M, Thomas Joseph Prakash J (2016) Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J Asian Ceram Soc 4(1):124–132

    Article  Google Scholar 

  48. Tseng SF (2018) Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater. Appl Surf Sci 448:163–167

    Article  Google Scholar 

  49. Tseng SF, Lin YH, Zhou MH, Hsu SH, Hsiao WT (2023) Synthesis of Ti3C2Tx/ZnO composites decorated with PEDOT:PSS for NO2 gas sensors. J Adv Manuf Technol 126(5–6):2269–2281

    Article  Google Scholar 

  50. Duoc VT, Hung CM, Nguyen H, Van Duy N, Van Hieu N, Hoa ND (2021) Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and ZnO/ZnO. Sens Actuators B: Chem 348:130652

    Article  Google Scholar 

  51. Zhang Z, Gao Z, Fang R, Li H, He W, Du C (2020) UV-assisted room temperature NO2 sensor using monolayer graphene decorated with SnO2 nanoparticles. Ceram Int 46(2):2255–2260

    Article  Google Scholar 

  52. Hung NM, Hung CM, Van Duy N, Hoa ND, Hong HS, Dang TK, Viet NN, Phuoc PH, Van Hieu N (2021) Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation. Sens Actuators A: Phys 327:112759

    Article  Google Scholar 

  53. Khuspe G, Sakhare R, Navale S, Chougule M, Kolekar Y, Mulik R, Pawar R, Lee C, Patil V (2013) Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram Int 39(8):8673–8679

    Article  Google Scholar 

  54. Zhang B, Zhang S, Xia Y, Yu P, Xu Y, Dong Y, Wei Q, Wang J (2022) High-performance room-temperature NO2 gas sensor based on Au-loaded SnO2 nanowires under UV light activation. Nanomaterials 12(22):4062

    Article  Google Scholar 

  55. Liu D, Tang Z, Zhang Z (2020) Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@ SnS2 nanostructures. Sens Actuators B: Chem 324:128754

    Article  Google Scholar 

  56. Li W, Guo J, Cai L, Qi W, Sun Y, Xu J-L, Sun M, Zhu H, Xiang L, Xie D (2019) UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens Actuators B: Chem 290:443–452

    Article  Google Scholar 

  57. Li T, Zhang D, Pan Q, Tang M, Yu S (2022) UV enhanced NO2 gas sensing at room temperature based on coral-like tin diselenide/MOFs-derived nanoflower-like tin dioxide heteronanostructures. Sens Actuators B: Chem 355:131049

    Article  Google Scholar 

Download references

Funding

This study was funded by National Taipei University of Technology—Thammasat University Joint Research Program (Contract Nos. NTUT-TU-112–02 and MF 2/2566) and National Science and Technology Council of Taiwan (Contract Nos. MOST 111–2628-E-027–005-MY2 and NSTC 111–2622-E-027–015). S.H. Hsu appreciated the support from the Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University.

Author information

Authors and Affiliations

Authors

Contributions

Shih-Feng Tseng: Conceptualization; Investigation; Methodology; Project administration; Formal analysis; Writing- Original draft; Writing- Reviewing and Editing. Yi-Chin Chen: Data curation; Software; Investigation; Validation. Wen-Tse Hsiao: Conceptualization; Methodology; Investigation; Validation. Yi-Hao Lin: Investigation; Validation. Shu-Han Hsu: Investigation; Formal analysis; Validation.

Corresponding authors

Correspondence to Shih-Feng Tseng or Shu-Han Hsu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1732 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, SF., Chen, YC., Hsiao, WT. et al. Facile synthesis of SnO2 nanopowders on laser-patterned ITO electrodes for fast response NO2 gas sensors. Int J Adv Manuf Technol 131, 4953–4964 (2024). https://doi.org/10.1007/s00170-024-13349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13349-6

Keywords

Navigation