Skip to main content

Advertisement

Log in

Synthesis and characterization of multilayer graphene oxide on yttria-zirconia ceramics for dental implant

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In order to expand the family and improve the bioactivity of oral implant ceramics, the phase structures, mechanical and wetting properties of the hot-pressed yttria-zirconia/multilayer graphene oxide composite (3Y-ZrO2/GO) ceramics were investigated. GO was uniformly distributed in 3Y-ZrO2 powders, forming the C–O–Zr bond during the sintering process. In comparison to raw 3Y-ZrO2 ceramics, the flexural strength and fracture toughness improved up to 200% (1489.96 ± 35.71 MPa) in ZG3 (with 0.15 wt% GO) and 40.9% (8.95 ± 0.59 MPa m1/2) in ZG2 (with 0.1 wt% GO), respectively, while the relative density and Vickers hardness increased slightly. The toughening mechanisms included crack deflection, crack bridging, and GO put-out. Meanwhile, the composite ceramics were transformed into a more hydrophilic direction and indicated a good wetting property. In consideration of mechanical and wetting properties, the ZG3 would be a favorable alternative to the yttria-zirconia ceramic (Y-TZP) in dental implant applications. The results are expected to serve as a technical guidance for the fabrication and evaluation of dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
TABLE 1:
Figure 9:

Similar content being viewed by others

References

  1. G.-R. Fan, H.-J. Su, J. Zhang, M. Guo, H. Yang, H.-F. Liu, E.-Y. Wang, L. Liu, and H.-Z. Fu: Microstructure and cytotoxicity of Al2O3-ZrO2 eutectic bioceramics with high mechanical properties prepared by laser floating zone melting. Ceram. Int. 44, 17978–17985 (2018).

    Article  CAS  Google Scholar 

  2. L. Bao, J.-X. Liu, F. Shi, Y.-Y. Jiang, and G.-S. Liu: Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl. Surf. Sci. 290, 48–52 (2014).

    Article  CAS  Google Scholar 

  3. A. Carvalho, L. Grenho, M.-H. Fernandes, A. Daskalova, A. Trifonov, I. Buchvarov, and F.-J. Monteiro: Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram. Int. 46, 1383–1389 (2020).

    Article  CAS  Google Scholar 

  4. I. Sailer, N.-A. Makarov, D.-S. Thoma, M. Zwahlen, and B.-E. Pjetursson: All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 31, 603–623 (2015).

    Article  CAS  Google Scholar 

  5. C.-L. Coadou, N. Karst, F. Emieux, O. Sicardy, A. Montani, G. Bernard-Granger, J. Chevalier, L. Gremillard, and J.-P. Simonato: Assessment of ultrathin yttria-stabilized zirconia foils for biomedical applications. J. Mater. Sci. 50, 1–11 (2017).

    Google Scholar 

  6. O.-S.-A. El-Ghany and A.-H. Sherief: Zirconia based ceramics, some clinical and biological aspects: Review. Fut. Dent. J. 2, 55–64 (2016).

    Article  Google Scholar 

  7. M.-S. Chaar, N. Passia, and M. Kern: Ten-year clinical outcome of three-unit posterior FDPs made from a glass-infiltrated zirconia reinforced alumina ceramic (in-ceram zirconia). J. Dent. 43, 512–517 (2015).

    Article  CAS  Google Scholar 

  8. M.-E. Roy, L.-A. Whiteside, B.-J. Katerberg, and J.-A. Steiger: Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. J. Biomed. Mater. Res. A 83A, 1096–1102 (2007).

    Article  CAS  Google Scholar 

  9. R.-C. Garvie, C. Urbani, D.-R. Kennedy, and J.-C. McNeuer: Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics. J. Mater. Sci. 19, 3224–3228 (1984).

    Article  CAS  Google Scholar 

  10. E.-T. Thostenson, Z.-F. Ren, and T.-W. Chou: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    Article  CAS  Google Scholar 

  11. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  12. V. Castranova, P.-A. Schulte, and R.-D. Zumwalde: Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc. Chem. Res. 46, 642–649 (2012).

    Article  Google Scholar 

  13. N. Aoki, T. Akasaka, F. Watari, and A. Yokoyama: Carbon nanotubes as scaffolds for cell culture and effect on cellular functions. Dent. Mater. J. 26, 178–185 (2007).

    Article  CAS  Google Scholar 

  14. N. Ogihara, Y. Usui, K. Aoki, M. Shimizu, N. Narita, K. Hara, K. Nakamura, N. Ishigaki, S. Takanashi, M. Okamoto, H. Kato, H. Haniu, N. Ogiwara, N. Nakayama, S. Taruta, and N. Saito: Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine 7, 981–993 (2012).

    Article  CAS  Google Scholar 

  15. A.-A. Khan, A.-A. Al Kheraif, J. Syed, D.-D. Divakar, and J.-P. Matinlinna: Enhanced resin zirconia adhesion with carbon nanotubes-infused silanes: A pilot study. J. Adhes. 94, 167–180 (2016).

    Article  Google Scholar 

  16. C. Lee, X.-D. Wei, J.-W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  17. H.-Y. He, J. Klinowski, M. Forster, and A. Lerf: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    Article  CAS  Google Scholar 

  18. J.-W. Liu, Q. Zhang, X.-W. Chen, and J.-H. Wang: Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin. Chemistry 17, 4864–4870 (2011).

    Article  CAS  Google Scholar 

  19. L. Kou and C. Gao: Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 3, 519–528 (2011).

    Article  CAS  Google Scholar 

  20. J.-H. Shin and S.-H. Hong: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics. J. Eur. Ceram. Soc. 34, 1297–1302 (2014).

    Article  CAS  Google Scholar 

  21. S. Ramesh, M.-M. Khan, H.-C. Alexander Chee, Y.-H. Wong, P. Ganesan, M.-G. Kutty, U. Sutharsini, W.-J. Kelvin Chew, and A. Niakan: Sintering behavior and properties of graphene oxide-doped Y-TZP ceramics. Ceram. Int. 42, 17620–17625 (2016).

    Article  CAS  Google Scholar 

  22. Z.-Y.-B. Zeng, Y.-Z. Liu, W.-P. Chen, X.-Q. Li, Q.-F. Zheng, K.-L. Li, and R.-R. Guo: Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 101, 3498-3507 (2018).

    Google Scholar 

  23. X. Huang, X.-Y. Qi, F. Boey, and H. Zhang: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012).

    Article  CAS  Google Scholar 

  24. G.-K.-R. Pereira, A.-B. Venturini, T. Silvestri, K.-S. Dapieve, A.-F. Montagner, F.-Z.-M. Soares, and L.-F. Valandro: Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J. Mech. Behav. Biomed. 55, 151–163 (2016).

    Article  CAS  Google Scholar 

  25. A.-C. Ferrari, J.-C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.-S. Novoselov, S. Roth, and A.-K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401.1–187401.4 (2006).

    Google Scholar 

  26. J.-W. Sha, N.-Q. Zhao, E. Liu, C.-S. Shi, C.-N. He, and J.-J. Li: In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity. Carbon 68, 352–359 (2014).

    Article  CAS  Google Scholar 

  27. L. Zhang, W.-W. Liu, C.-G. Yue, T.-H. Zhang, P. Li, Z.-W. Xing, and Y. Chen: A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61, 105–115 (2013).

    Article  CAS  Google Scholar 

  28. Q. Zhou, J.-X. Huang, J.-Q. Wang, Z.-G. Yang, S. Liu, Z.-F. Wang, and S.-R. Yang: Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Adv. 5, 91802–91812 (2015).

    Article  CAS  Google Scholar 

  29. D. Li, J. Yao, B. Liu, H. Sun, S. Agtmaal, and C.-H. Feng: Preparation and characterization of surface grafting polymer of ZrO2 membrane and ZrO2 powder. Appl. Surf. Sci. 471, 394–402 (2019).

    Article  CAS  Google Scholar 

  30. X. Zhang, Y.-Y. Wu, S.-Y. He, and D.-Z. Yang: Structural characterization of sol-gel composites using TEOS/MEMO as precursors. Surf. Coat. Technol. 201, 6051–6058 (2007).

    Article  CAS  Google Scholar 

  31. C.-Q. Liu, K.-Z. Li, H.-J. Li, S.-Y. Zhang, Y.-L. Zhang, and B. Wang: Synthesis, characterization and ceramization of a carbon-rich zirconium-containing precursor for ZrC ceramic. Ceram. Int. 40, 7285–7292 (2014).

    Article  CAS  Google Scholar 

  32. S. Fabris, A.-T. Paxton, and M.-W. Finnis: A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002).

    Article  CAS  Google Scholar 

  33. J. Liu, H.-X. Yan, M.-J. Reece, and K. Jiang: Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32, 4185–4193 (2012).

    Article  CAS  Google Scholar 

  34. M. Kurumada, H. Hara, and E. Iguchi: Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics. Acta Mater. 53, 4839–4846 (2005).

    Article  CAS  Google Scholar 

  35. B.-S. Yilbas: Laser treatment of zirconia surface for improved surface hydrophobicity. J. Alloys Compd. 625, 208–215 (2015).

    Article  CAS  Google Scholar 

  36. J.-R. Rani, J. Lim, J. Oh, J.-W. Kim, H.-S. Shin, J.-H. Kim, S. Lee, and S.-C. Jun: Epoxy to carbonyl group conversion in graphene oxide thin films: Effect on structural and luminescent characteristics. J. Phys. Chem. C 116, 19010–19017 (2012).

    Article  CAS  Google Scholar 

  37. C. Burmeister and A. Kwade: Process engineering with planetary ball mills. Chem. Soc. Rev. 42, 7660 (2013).

    Article  CAS  Google Scholar 

  38. R.-W. Rice, C.-C. Wu, and F. Boichelt: Hardness–grain-size relations in ceramics. J. Am. Ceram. Soc. 77, 2539–2553 (1994).

    Article  CAS  Google Scholar 

  39. S.-C. Zhang, W.-G. Fahrenholtz, G.-E. Hilmas, and E.-J. Yadlowsky: Pressureless sintering of carbon nanotube Al2O3 composites. J. Eur. Ceram. Soc. 30, 1373–1380 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by the National Natural Science Foundation of China (Grant No. 51175304) and the Shandong Provincial Natural Science Foundation, China (Grant Nos ZR2017MEE052 and ZR2018ZB0105). The authors thank all the former researches contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jiang, Z., Zhao, L. et al. Synthesis and characterization of multilayer graphene oxide on yttria-zirconia ceramics for dental implant. Journal of Materials Research 35, 2466–2477 (2020). https://doi.org/10.1557/jmr.2020.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.199

Navigation