Skip to main content

Advertisement

Log in

Microstructural, Tribological, and Degradation Properties of Al2O3- and CeO2-Doped 3 mol.% Yttria-Stabilized Zirconia Bioceramic for Biomedical Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Among the ceramic materials available for load-bearing bioimplant applications, yttria-stabilized zirconia (Y-TZP) holds great potential owing to its superior mechanical properties (e.g., fracture toughness ~ 4.5 MPam1/2). However, the degradation concern of Y-TZP over long exposure to body fluids limits its applications. To overcome this limitation, the current work focuses on developing stabilized zirconia ceramics doped with Al2O3 and CeO2 through an easily available low-cost sintering technique. The microstructural, tribological, and degradation properties of Al2O3- and CeO2-doped 3Y-TZP bioceramic were investigated. The volumetric wear and roughness values of Al2O3- and CeO2-doped 3Y-TZP samples were found to be much lower compared to undoped 3Y-TZP samples. Relative densities of above 97.5% of the theoretical densities (> 6.1 g/cm−3) were obtained in 3Y-TZP sintered at 1450 °C. Low-temperature degradation resistance was observed when immersing the samples in Ringer’s solution at 37 °C over a period of 24 weeks. The weight loss and SEM images of the samples were analyzed to generate the samples’ degradation patterns. The results indicate that the incorporation of dopants is technically beneficial in terms of ceramic sample aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Bikramjit, J. Vleugels, and O. Van der Biest, Microstructure–Toughness–Wear Relationship of Tetragonal Zirconia Ceramics, J. Eur. Ceram. Soc., 2004, 24, p 2031–2040

    Article  Google Scholar 

  2. C. Aksel, Mechanical Properties and Thermal Shock Behaviour of Alumina-Mullite-Zirconia and Alumina-Mullite Refractory Materials by Slip Casting, Ceram. Int., 2003, 29, p 311–316

    Article  CAS  Google Scholar 

  3. G.Y. Akimov and V.M. Timchenko, Mechanical Properties of Ceramics Prepared from a Nanocrystalline ZrO2-3 mol.% Y2O3 Powder, Refract. Ind. Ceram., 2004, 45, p 55–57

    Article  CAS  Google Scholar 

  4. S. Ramesh, C. Gill, S. Lawson, and G.P. Dransfield, The Effect of Copper Oxide on Sintering, Microstructure, Mechanical Properties and Hydrothermal Ageing of Coated 2.5Y-TZP Ceramics, J. Mater. Sci., 1999, 34, p 5457–5467

    Article  CAS  Google Scholar 

  5. B. Bikramjit, J. Vleugels, and O. Van der Biest, Toughness Tailoring of Yttria-Doped Zirconia Ceramics, Mater. Sci. Eng. A, 2004, 380, p 215–221

    Article  Google Scholar 

  6. W. Dworak and D. Fingerle, Ceramics Materials for Engines, Ceram. Trans. J., 1987, 86, p 170–182

    CAS  Google Scholar 

  7. A.M. Anthony, Effect of Sintering Temperature on Mechanical Properties of Magnesia Partially Stabilized Zirconia Refractory, Ceram. Int., 2016, 42, p 10593–10598

    Article  Google Scholar 

  8. N. Claussen, Strengthening Strategies For ZrO2-Toughened Ceramics at High Temperatures, Mater. Sci. Eng., 1985, 71, p 23–38

    Article  CAS  Google Scholar 

  9. M. Golieskardi, M. Satgunam, D. Ragurajan, and M.N.M. Ansari, The Effect of Aluminum Oxide (Al2O3) and Cerium Oxide (CeO2) on the Structural and Mechanical Properties of Yttria Tetragonal Zirconia Polycrystal (Y-TZP), J. Aust. Ceram. Soc., 2015, 51, p 16–21

    CAS  Google Scholar 

  10. J.R. Seidensticker and M.J. Mayo, Superplasticity in 3Y-TZP Doped with Small Amounts of Copper Oxide, Scr. Metall. Mater., 1994, 31, p 1749–1754

    Article  CAS  Google Scholar 

  11. M. Guazzatoa, M. Albakrya, S.P. Ringerb, and M.V. Swaina, Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part I. Pressable and Alumina Glass-Infiltrated Ceramics, Dent. Mater., 2004, 20, p 441–448

    Article  Google Scholar 

  12. S. Lawson, Review—Environmental Degradation of Zirconia Ceramics, J. Eur. Ceram. Soc., 1995, 15, p 485–502

    Article  CAS  Google Scholar 

  13. G.K.R. Pereira, A.B. Venturini, T. Silvestri, K.S. Dapieve, A.F. Montagner, F.Z.M. Soares, and L.F. Valandro, Low-Temperature Degradation of Y-TZP Ceramics: A Systematic Review and Meta-analysis, J. Mech. Behav. Biomed. Mater., 2016, 55, p 151–163

    Article  CAS  Google Scholar 

  14. X. Guo, Hydrothermal Degradation Mechanism of Tetragonal Zirconia, J. Mater. Sci., 2001, 36, p 3737–3744

    Article  CAS  Google Scholar 

  15. S.M. Kurtz, S. Kocagöz, C. Arnholt, R. Huet, M. Ueno, and W.L. Walter, Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement, J. Mech. Behav. Biomed. Mater., 2014, 31, p 107–116

    Article  CAS  Google Scholar 

  16. C.J. Howard and R.J. Hill, The Polymorphs of Zirconia: Phase Abundance and Crystal Structure by Rietveld Analysis of Neutron and x-ray Diffraction Data, J. Mater. Sci., 1991, 26, p 127–134

    Article  CAS  Google Scholar 

  17. K. Matsui, H. Yoshida, and Y. Ikuhara, Grain-Boundary Structure and Microstructure Development Mechanism in 2-8 mol.% Yttria-Stabilized Zirconia Polycrystals, Acta Mater., 2008, 56, p 1315–1325

    Article  CAS  Google Scholar 

  18. O. Hiroshi, N. Hironori, S. Tohru, I. Yuichi, and N. Koichi, Mechanical Properties of 2.0-3.5 mol.% Y2O3-Stabilized Zirconia Polycrystals Fabricated by the Solid Phase Mixing and Sintering Method, J. Ceram. Soc. Jpn., 2008, 12, p 1270–1277

    Google Scholar 

  19. S. Ramesh, S. Meenaloshini, C.Y. Tan, W.J. Kelvin Chew, and W.D. Teng, Effect of Manganese Oxide on the Sintered Properties and Low Temperature Degradation of Y-TZP Ceramics, Ceram. Int., 2008, 34, p 1603–1608

    Article  CAS  Google Scholar 

  20. M.S. Suh, Y.H. Chae, and S.S. Kim, Friction and Wear Behavior of Structural Ceramics Sliding Against Zirconia, Wear, 2008, 264, p 800–806

    Article  CAS  Google Scholar 

  21. E. Lilley, Review of Low Temperature Degradation of Tetragonal Zirconia Ceramics, Ceramics Transactions, Corrosion and Corrosive Degradation of Ceramics, Vol 10, R.E. Tressler and H. McNallen, Ed., American Ceramic Society, Westerville, 1990, p 387–406

    Google Scholar 

  22. J. Chevalier, L. Gremillard, and S. Deville, Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants, Annu. Rev. Mater. Res., 2007, 37, p 1–32

    Article  CAS  Google Scholar 

  23. R.B. Heimann, Materials Science of Crystalline Bioceramics: A Review of Basic Properties and Applications, CMU J., 2002, 1, p 23–45

    Google Scholar 

  24. P. Kanellopoulos and C. Gill, Hydrothermal Ageing of Yttria-Stabilized Zirconia, Sintered at 1300-1325 °C: The Effects of Copper Oxide Doping and Sintering Time Variations, J. Mater. Sci., 2002, 37, p 5075–5082

    Article  CAS  Google Scholar 

  25. F. Kern and R. Gadow, Mechanical Properties and Low Temperature Degradation Resistance of 2.5Y-TZP-Alumina Composites, Mater. Ceram., 2013, 65, p 258–266

    CAS  Google Scholar 

  26. S.M. Kw, S. Ramesh, L.T. Bang, Y.H. Wonga, W.J. Kelvin Chew, C.Y. Tan, J. Purbolaksono, H. Misran, and W.D. Teng, Effect of Sintering Holding Time on the Properties and Low-Temperature Degradation Behaviour of Manganese Oxide-Doped Y-TZP Ceramic, J. Ceram. Process. Res., 2015, 16, p 193–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Golieskardi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golieskardi, M., Satgunam, M., Ragurajan, D. et al. Microstructural, Tribological, and Degradation Properties of Al2O3- and CeO2-Doped 3 mol.% Yttria-Stabilized Zirconia Bioceramic for Biomedical Applications. J. of Materi Eng and Perform 29, 2890–2897 (2020). https://doi.org/10.1007/s11665-020-04829-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04829-3

Keywords

Navigation