Skip to main content
Log in

Hydroxyapatite-dextran methacrylate core/shell hybrid nanocarriers for combinatorial drug therapy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a hybrid dual drug-loaded hydroxyapatite-oxidized dextran methacrylate core–shell nanocarrier was formulated and explored for combinatorial delivery of doxorubicin (DOX) and methotrexate (MTX) to bone cancer. The synthesized nanocarrier was well characterized by different techniques. In vitro drug release studies in both acidic (pH 5) and alkaline (pH 7.4) conditions showed sequential release of MTX followed by DOX in a sustained manner for 10 days. Biocompatibility and cytotoxicity studies performed using drug-loaded nanoparticles (NPs) on fibroblast L929 cells and osteosarcoma MG63 cells (OMG63) showed that the NPs were highly biocompatible and showed concentration-dependent toxicity. Gene expression studies in OMG-63 cells exhibited the upregulation of caspase-3 and BAX which confirmed the apoptosis induced by dual drug-loaded NPs. The nanocarrier is expected to be a potential bone void filling material, as well as a platform for sequential delivery of DOX and MTX for the treatment of bone cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
TABLE 1:
TABLE 2:
Figure 3:
Figure 4:
Figure 5:
TABLE 3:
Figure 6:
Figure 7:
Scheme 1:

Similar content being viewed by others

References

  1. T. Ibrahim, L. Mercatali, and D. Amadori: Bone and cancer: The osteoncology. Clin. Cases Miner. Bone Metab. 10, 121 (2013).

    Google Scholar 

  2. J.T. Buijs and G. van der Pluijm: Osteotropic cancers: From primary tumor to bone. Cancer Lett. 273, 177–193 (2009).

    Article  CAS  Google Scholar 

  3. T. Kimura: Multidisciplinary approach for bone metastasis: A review. Cancers 10, 156 (2018).

    Article  CAS  Google Scholar 

  4. W. Gu, C. Wu, J. Chen, and Y. Xiao: Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int. J. Nanomedicine 8, 2305–2317 (2013).

    Article  CAS  Google Scholar 

  5. F. Macedo, K. Ladeira, F. Pinho, N. Saraiva, N. Bonito, L. Pinto, and F. Gonçalves: Bone metastases: An overview. Oncol. Rev. 11, 321 (2017).

    Google Scholar 

  6. S. Hossen, M.K. Hossain, M.K. Basher, M.N. Mia, M.T. Rahman, and M.J. Uddin: Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 15, 1–18 (2019).

    Article  CAS  Google Scholar 

  7. C. Marques, J.M. Ferreira, E. Andronescu, D. Ficai, M. Sonmez, and A. Ficai: Multifunctional materials for bone cancer treatment. Int. J. Nanomedicine 9, 2713–2725 (2014).

    Google Scholar 

  8. E.M. Alexandrino, S. Ritz, F. Marsico, G. Baier, V. Mailänder, K. Landfester, and F.R. Wurm: Paclitaxel-loaded polyphosphate nanoparticles: A potential strategy for bone cancer treatment. J. Mater. Chem. B. 2, 1298 (2014).

    Article  CAS  Google Scholar 

  9. H. Ma, C. He, Y. Cheng, Z. Yang, J. Zang, J. Liu, and X. Chen: Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl. Mater. Interfaces 7, 27040–27048 (2015).

    Article  CAS  Google Scholar 

  10. J.A. Kemp, M.S. Shim, C.Y. Heo, and Y.J. Kwon: “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016).

    Article  CAS  Google Scholar 

  11. P. Parhi, C. Mohanty, and S.K. Sahoo: Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today. 17, 1044–1052 (2012).

    Article  CAS  Google Scholar 

  12. A. Wicki, D. Witzigmann, V. Balasubramanian, and J. Huwyler: Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 28, 138–157 (2015).

    Article  CAS  Google Scholar 

  13. C.M. Hu, S. Aryal, and L. Zhang: Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv 1, 323–334 (2010).

    Article  CAS  Google Scholar 

  14. S.S. Qi, J.H. Sun, H.H. Yu, and S.Q. Yu: Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv. 24, 1909–1926 (2017).

    Article  CAS  Google Scholar 

  15. M. Estanqueiro, M.H. Amaral, J. Conceicao, and J.M. Lobo: Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B: Biointerfaces 126, 631–648 (2015).

    Article  CAS  Google Scholar 

  16. C.Y. Zhao, R. Cheng, Z. Yang, and Z.M. Tian: Nanotechnology for cancer therapy based on chemotherapy. Molecules. 23, 826 (2018).

    Article  CAS  Google Scholar 

  17. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013).

    Article  CAS  Google Scholar 

  18. X. Cheng and L. Kuhn: Chemotherapy drug delivery from calcium phosphate nanoparticles. Int. J. Nanomedicine 2, 667 (2007).

    CAS  Google Scholar 

  19. L. Yang, B.W. Sheldon, and T.J. Webster: Nanophase ceramics for improved drug delivery. Am. Ceram. Soc. Bull. 89, 24–32 (2010).

    CAS  Google Scholar 

  20. K.D. Son and Y.J. Kim: Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater. Res. 21, 13 (2017).

    Article  CAS  Google Scholar 

  21. W.M. Li, C.W. Su, Y.W. Chen, and S.Y. Chen: In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs. Acta Biomater. 15, 191–199 (2015).

    Article  CAS  Google Scholar 

  22. A. Lebugle, A. Rodrigues, P. Bonnevialle, J.J. Voigt, P. Canal, and F. Rodriguez: Study of implantable calcium phosphate systems for the slow release of methotrexate. Biomaterials. 23, 3517–3522 (2002).

    Article  CAS  Google Scholar 

  23. M.F. Cipreste and E.M.B. Sousa: Poly(vinyl alcohol)/collagen/hydroxyapatite nanoparticles hybrid system containing yttrium-90 as a potential agent to treat osteosarcoma. J. Biomater. Nanobiotechnol. 5, 24–30 (2014).

    Article  CAS  Google Scholar 

  24. Z.J. Rong, L.J. Yang, B.T. Cai, L.X. Zhu, Y.L. Cao, G.F. Wu, and Z.J. Zhang: Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment. J. Mater. Sci. Mater. Med. 27, 89 (2016).

    Article  CAS  Google Scholar 

  25. Y. Wang, X. Zhang, J. Yan, Y. Xiao, and M. Lang: Surface modification of hydroxyapatite with poly(methyl methacrylate) via surface-initiated ATRP. Appl. Surf. Sci. 257, 6233–6238 (2011).

    Article  CAS  Google Scholar 

  26. Q. Liu, J.R. de Wijn, and C.A. Van Blitterswijk: Covalent bonding of PMMA, PBMA, and poly (HEMA) to hydroxyapatite particles. J. Biomed. Mater. Res. 40, 257–263 (1998).

    Article  CAS  Google Scholar 

  27. Q. Liu, J.R. de Wijn, K. de Groot, and C.A. van Blitterswijk: Surface modification of nano-apatite by grafting organic polymer. Biomaterials 19, 1067–1072 (1998).

    Article  CAS  Google Scholar 

  28. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites–a review. Prog. Polym. Sci. 38, 1232–1261 (2013).

    Article  CAS  Google Scholar 

  29. J. Wei, P. He, A. Liu, X. Chen, X. Wang, and X. Jing: Surface modification of hydroxyapatite nanoparticles with thermal-responsive PNIPAM by ATRP. Macromol. Biosci. 9, 1237–1246 (2009).

    Article  CAS  Google Scholar 

  30. A. Matsuda, T. Furuzono, D. Walsh, A. Kishida, and J. Tanaka: Surface modification of a porous hydroxyapatite to promote bonded polymer coatings. J. Mater. Sci. Mater 14, 973–978 (2003).

    Article  CAS  Google Scholar 

  31. S.R. Prasad, A. Jayakrishnan, and T.S. Sampath Kumar: Hydroxyapatite-poly(vinyl alcohol) core-shell nanoparticles for dual delivery of methotrexate and gemcitabine for bone cancer treatment. J. Drug Deliv. Sci. Technol. 51, 629–638 (2019).

    Article  CAS  Google Scholar 

  32. S.S. Dhaneshwar, K. Mini, N. Gairola, and S.S. Kadam: Dextran: A promising macromolecular drug carrier. Indian J. Pharm. Sci. 68, 705 (2006).

    Article  CAS  Google Scholar 

  33. J.D. Cabral, M. Roxburgh, Z. Shi, L. Liu, M. McConnell, G. Williams, N. Evans, L.R. Hanton, J. Simpson, S.C. Moratti, and B.H. Robinson: Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention. J. Mater. Sci. Mater. Med. 25, 2743–2756 (2014).

    Article  CAS  Google Scholar 

  34. J. Varshosaz: Dextran conjugates in drug delivery. Expert Opin. Drug Deliv. 9, 509–523 (2012).

    Article  CAS  Google Scholar 

  35. X. Feng, D. Li, J. Han, X. Zhuang, and J. Ding: Schiff base bond-linked polysaccharide-doxorubicin conjugate for upregulated cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 76, 1121–1128 (2017).

    Article  CAS  Google Scholar 

  36. T. Doane and C. Burda: Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65, 607–621 (2013).

    Article  CAS  Google Scholar 

  37. L. Qiu, C.Y. Hong, and C.Y. Pan: Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int. J. Nanomedicine 10, 3623–3640 (2015).

    CAS  Google Scholar 

  38. T. Miao, J. Wang, Y. Zeng, G. Liu, and X. Chen: Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: From bench to bedside. Adv. Sci. 5, 700513 (2018).

    Article  CAS  Google Scholar 

  39. Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao, and S. Xie: DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 12, 263–271 (2010).

    Article  CAS  Google Scholar 

  40. M. Gierszewska-Drużyńska, and J. Ostrowska-Czubenko: Mechanism of water diffusion into noncrosslinked and ionically crosslinked chitosan membranes. Prog. Chem. Appl. Chitin Deriv. 17, 63–70 (2012).

    Google Scholar 

  41. R.Y. Basha, T.S. Sampath Kumar, and M. Doble: Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr. Polym. 218, 53–62 (2019).

    Article  CAS  Google Scholar 

  42. International Organization for Standardization. ISO 10993-5. Biological Evaluation of Medical Devices–Part 5: Tests for In vitro Cytotoxicity (ISO, Geneva, 2009).

    Google Scholar 

  43. T.C. Chou: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006).

    Article  CAS  Google Scholar 

  44. W. Song, Z. Tang, M. Li, S. Lv, H. Sun, M. Deng, H. Liu, and X. Chen: Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 10, 1392–1402 (2014).

    Article  CAS  Google Scholar 

  45. M. Rahimi, K.D. Safa, and R. Salehi: Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym. Chem. 8, 7333–7350 (2017).

    Article  CAS  Google Scholar 

  46. S.W. Lowe and A.W. Lin: Apoptosis in cancer. Carcinogenesis. 21, 485–495 (2000).

    Article  CAS  Google Scholar 

  47. S.H. Kim and C.C. Chu: Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM. J. Biomed. Mater. Res. 49(4), 517–27 (2000).

    Article  CAS  Google Scholar 

  48. Y. Zhang and J. Lu: A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J. Nanoparticle Res. 9, 589–594 (2006).

    Article  CAS  Google Scholar 

  49. A.P. Francis, S. Gurudevan, and A. Jayakrishnan: Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates. J. Biomater Sci. Polym. 29, 1529–1548 (2018).

    Article  CAS  Google Scholar 

  50. C.K. Balavigneswaran, S.K. Mahto, B. Subia, A. Prabhakar, K. Mitra, V. Rao, M. Ganguli, B. Ray, P. Maiti, and N. Misra: Tailored chemical properties of 4-Arm star shaped poly(d,l-lactide) as cell adhesive three-dimensional scaffolds. Bioconjugate Chem. 28, 1236–1250 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Nitish R. Mahapatra for providing cell culture facility and thanks are due to Mr. Abrar Ali Khan and Mrs. Hemalatha who helped in gene expression studies. The authors thank Professor Sakthi Kumar of Toyo University, Japan for the TEM analysis. The authors also thank Central XRD Facility and Sophisticated Analytical Instrument Facility (SAIF) of IIT Madras for analytical support. This research did not receive any specific grant from any funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Jayakrishnan or T. S. Sampath Kumar.

Supplementary materials

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.193

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram Prasad, S., Jayakrishnan, A. & Sampath Kumar, T.S. Hydroxyapatite-dextran methacrylate core/shell hybrid nanocarriers for combinatorial drug therapy. Journal of Materials Research 35, 2451–2465 (2020). https://doi.org/10.1557/jmr.2020.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.193

Navigation