Skip to main content

Advertisement

Log in

Blend-based fibers produced via centrifugal spinning and electrospinning processes: Physical and rheological properties

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cellprene™ is a recently developed polymeric blend based on poly(lactide-co-glycolide) (PLGA)/polyisoprene (PI) with good biological performance for biomedical applications. However, its potential as fiber scaffold in tissue engineering is still unknown, and the influence of processing parameters is yet to be understood. In this study, several compositions based on PLGA/PI blend mixed with hydroxyapatite (HAp) and polyethylene glycol (PEG) were prepared by solvent casting. Then, the membranes were used to produce micro/nanofibers by centrifugal spinning (CS) and electrospinning (ES). The viscosity’s effect was studied to find an ideal viscosity value to produce homogeneous micro/nanofibers. The in vitro bioactivity test was also performed. Rheological results showed that the best viscosity range was (0.105 Pa s > η > 0.138 Pa s) for CS; larger fibers of ES were produced with lower viscosities. The sample with the lowest HAp concentration exhibited thinner and more homogeneous non-beaded fibers and proved its bioactivity response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Table 2.
Figure 8.

Similar content being viewed by others

References

  1. A. Asti and L. Gioglio: Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 37, 187 (2014).

    Article  CAS  Google Scholar 

  2. K. Wei, Y. Li, K.-O. Kim, Y. Nakagawa, B.-S. Kim, K. Abe, G.-Q. Chen, and I.-S. Kim: Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J. Biomed. Mater. Res. A 97A, 272 (2011).

    Article  CAS  Google Scholar 

  3. J. Liuyun, L. Yubao, and X. Chengdong: Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 16, 65 (2009).

    Article  CAS  Google Scholar 

  4. T. Prasad, E.A. Shabeena, D. Vinod, T.V. Kumary, and P.R. Anil Kumar: Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J. Mater. Sci. Mater. Med. 26, 5352 (2015).

    Article  CAS  Google Scholar 

  5. C. Dong and Y. Lv: Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 8, 42 (2016).

    Article  CAS  Google Scholar 

  6. S.H. Xia, S.H. Teng, and P. Wang: Synthesis of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration. Mater. Lett. 213, 181 (2018).

    Article  CAS  Google Scholar 

  7. B.N. Singh and K. Pramanik: Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Biofabrication 9, 015028 (2017).

    Article  CAS  Google Scholar 

  8. M. Abbasian, B. Massoumi, R. Mohammad-Rezaei, H. Samadian, and M. Jaymand: Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 134, 673 (2019).

    Article  CAS  Google Scholar 

  9. D.R. Marques, L.A. dos Santos, V.C. Sousa, P.R.S. Sanches, and A.V. Macedo Neto: Blendas Poliméricas de Poli (Ácido Láctico-co-Glicólico) e Poliisopreno. BR Patent registration number: 0000221010682444, 2011.

    Google Scholar 

  10. _Universidade Federal do Rio Grande do Sul. Pedido de Registro de Marca de Produto (Nominativa). BR Patent registration number: 906982910, 2013.

  11. D.R. Marques, L.A. dos Santos, L.F. Schopf, and J.C.S. de Fraga: Analysis of poly(lactic-co-glycolic acid)/poly(isoprene) polymeric blend for application as biomaterial. Polímeros 2, 579 (2013).

    Article  CAS  Google Scholar 

  12. H.Y. Mi, S.M. Palumbo, X. Jing, L.-S. Turng, W.-J. Li, and X.-F. Peng: Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. J. Biomed. Mater. Res. B Appl. Biomater. 102, 1434 (2014).

    Article  CAS  Google Scholar 

  13. S.I. Jeong, E.K. Ko, J. Yum, C.H. Jung, Y.M. Lee, and H. Shin: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol. Biosci. 8, 328 (2008).

    Article  CAS  Google Scholar 

  14. S.Y. Heo, J.W. Seol, and N.S. Kim: Characterisation and assessment of electrospun poly/hydroxyapatite nanofibres together with a cell adhesive for bone repair applications. Vet Med 59, 498 (2014).

    Article  CAS  Google Scholar 

  15. D. Banerjee and S. Bose: Effects of polymer chemistry, concentration, and pH on doxorubicin release kinetics from hydroxyapatite-PCL-PLGA composite. J. Mater. Res. 34, 1692 (2019).

    Article  CAS  Google Scholar 

  16. T. Hou, X. Li, Y. Lu, and B. Yang: Highly porous fibers prepared by centrifugal spinning. Mater. Des. 114, 303–311 (2017).

    Article  CAS  Google Scholar 

  17. D. Salamon, S. Teixeira, S.M. Dutczak, and D.F. Stamatialis: Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery. Ceram. Int. 40, 14793 (2014).

    Article  CAS  Google Scholar 

  18. H.R. Pant, M.P. Neupane, B. Pant, G. Panthi, H.J. Oh, M.H. Lee, and H.Y. Kim: Fabrication of highly porous poly(e-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf. B 88, 587 (2011).

    Article  CAS  Google Scholar 

  19. D.E. Mogosanu, R. Verplancke, P. Dubruel, and J. Vanfleteren: Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater. Des. 89, 1315 (2016).

    Article  CAS  Google Scholar 

  20. H. Wu, J. Kong, X. Yao, C. Zhao, Y. Dong, and X. Lu: Polydopamine-assisted attachment of β-cyclodextrin on porous electrospun fibers for water purification under highly basic condition. Chem. Eng. J. 270, 101 (2015).

    Article  CAS  Google Scholar 

  21. B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, and D.N. He: Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23, 5 (2012).

    Article  CAS  Google Scholar 

  22. F. Dabirian, S.A. Hosseini Ravandi, A.R. Pishevar, and R.A. Abuzade: A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J. Electrostat. 69, 540 (2011).

    Article  Google Scholar 

  23. G.M. Gonzalez, L.A. MacQueen, J.U. Lind, S.A. Fitzgibbons, C.O. Chantre, I. Huggler, H.M. Golecki, J.A. Goss, and K.K. Parker: Production of synthetic, para-aramid and biopolymer nanofibers by immersion rotary jet-spinning. Macromol. Mater. Eng. 302, 1600365 (2017).

    Article  CAS  Google Scholar 

  24. H. Rodríguez-Tobías, G. Morales, and D. Grande: Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fiber. Mater. Sci. Eng. C 101, 306 (2019).

    Article  CAS  Google Scholar 

  25. G. Jin, R. He, B. Sha, W. Li, H. Qing, R. Teng, and F. Xu: Electrospun three-dimensional aligned nano fibrous scaffolds for tissue engineering. Mater. Sci. Eng. C 92, 995 (2018).

    Article  CAS  Google Scholar 

  26. F.A. Vechietti, D. Marques, N.O. Muniz, and L.A. Santos: Fibers obtaining and characterization using poly(lactic-co-glycolic acid) and poly(isoprene) containing hydroxyapatite and α TCP calcium phosphate by electrospinning method. Key Eng. Mater. 631, 173 (2015).

    Article  CAS  Google Scholar 

  27. L. Zhang, Z. Wang, Y. Xiao, P. Liu, S. Wang, Y. Zhao, M. Shen, and X. Shi: Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Mater. Sci. Eng. C 91, 255 (2018).

    Article  CAS  Google Scholar 

  28. A.H. Touny, J.G. Lawrence, A.D. Jones, and S.B. Bhaduri: Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J. Mater. Res. 25, 857 (2010).

    Article  CAS  Google Scholar 

  29. J.J. Vázquez and E.S.M. Martínez: Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. J. Mater. Res. 34, 2819 (2019).

    Article  CAS  Google Scholar 

  30. R. Nayak, R. Padhye, I.L. Kyratzis, Y. Truong, and L. Arnold: Recent advances in nanofibre fabrication techniques. Text. Res. J. 82, 129 (2012).

    Article  CAS  Google Scholar 

  31. X. Li, H. Chen, and B. Yang: Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydr. Polym. 137, 459 (2016).

    Article  CAS  Google Scholar 

  32. P. Mellado, H.A. McIlwee, M.R. Badrossamay, J.A. Goss, L. Mahadevan, and K.K. Parker: A simple model for nanofiber formation by rotary jet-spinning. Appl. Phys. Lett. 99, 203107 (2011).

    Article  CAS  Google Scholar 

  33. S. Ramakrishna, W. Teo, T. Lim, and Z. Ma: An Introduction to Electrospinning and Nanofibers (World Scientific Publishing Company, Singapore, 2005), p. 396.

    Book  Google Scholar 

  34. S. Padron, A. Fuentes, D. Caruntu, and K. Lozano: Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 113, 024318 (2013).

    Article  CAS  Google Scholar 

  35. M.R. Badrossamay, H.A. McIlwee, J.A. Goss, and K.K. Parker: Nanofiber assembly by rotary jet-spinning. Nano Lett. 10, 2257 (2010).

    Article  CAS  Google Scholar 

  36. G. Leng, X. Zhang, T. Shi, G. Chen, X. Wu, Y. Liu, M. Fang, X. Min, and Z. Huang: Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning. Polymer 185, 121964 (2019).

    Article  CAS  Google Scholar 

  37. L. Wang, J. Shi, L. Liu, E. Secret, and Y. Chen: Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies. Microelectron. Eng. 88, 1718 (2011).

    Article  CAS  Google Scholar 

  38. E. Stojanovska, E. Canbay, E.S. Pampal, M.D. Calisir, O. Agma, Y. Polat, R. Simsek, N.A.S. Gundogdu, Y. Akgul, and A. Kilic: A review on non-electro nanofibre spinning techniques. RSC Adv. 6, 83783 (2016).

    Article  CAS  Google Scholar 

  39. S.P. Decent, A.C. King, M.J.H. Simmons, E.I. Parau, I.M. Wallwork, C.J. Gurney, and J. Uddin: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33, 4283 (2009).

    Article  Google Scholar 

  40. M.M. Machado-Paula, M.A.F. Corat, M. Lancellotti, G. Mi, F.R. Marciano, M.L. Vega, A.A. Hidalgo, T.J. Webster, and A.O. Lobo: A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mater. Sci. Eng. C 111, 110706 (2020).

    Article  CAS  Google Scholar 

  41. F. Sun, J. Guo, Y. Liu, and Y. Yu: Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers. Int. J. Biol. Macromol. 137, 420 (2019).

    Article  CAS  Google Scholar 

  42. R. Hobzova, Z. Hampejsova, T. Cerna, J. Hrabeta, K. Venclikova, J. Jedelska, U. Bakowsky, Z. Bosakova, M. Lhotka, S. Vaculin, M. Franek, M. Steinhart, J. Kovarova, J. Michalek, and J. Sirc: Poly(D,L-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: Preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. Mater. Sci. Eng. C 98, 982 (2019).

    Article  CAS  Google Scholar 

  43. D.R. Marques: Fibras De Poli (Ácido Láctico-Co-Glicólico)/Poliisopreno Para Aplicação Em Engenharia De Tecidos. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, 2015.

    Google Scholar 

  44. G.C. Pandey and P.B. Aswath: Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation. J. Mech. Behav. Biomed. Mater. 1, 227 (2008).

    Article  Google Scholar 

  45. B. Cengiz, Y. Gokce, N. Yildiz, Z. Aktas, and A. Calimli: Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf. 322, 29 (2008).

    Article  CAS  Google Scholar 

  46. L. Gan and R. Pilliar: Calcium phosphate sol–gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization. Biomaterials 25, 5303 (2004).

    Article  CAS  Google Scholar 

  47. C. Ilie, G. Stîngă, A. Iovescu, V. Purcar, D.F. Anghel, and D. Donescu: The influence of nonionic surfactants on the carbopol-peg interpolymer complexes. Rev. Roum. Chim. 55, 409 (2010).

    CAS  Google Scholar 

  48. S.R. Bhattarai, N. Bhattarai, P. Viswanathamurthi, H.K. Yi, P.H. Hwang, and H.Y. Kim: Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J. Biomed. Mater. Res. A 78, 247 (2006).

    Article  CAS  Google Scholar 

  49. L.M. Buttaro, E. Drufva, and M.W. Frey: Phase separation to create hydrophilic yet non-water soluble PLA/PLA-b-PEG fibers via electrospinning. J. Appl. Polym. Sci. 131, 1 (2014).

    Article  CAS  Google Scholar 

  50. V. Trakoolwannachai, P. Kheolamai, and S. Ummartyotin: Development of hydroxyapatite from eggshell waste and a chitosan-based composite: In vitro behavior of human osteoblast-like cell (Saos- 2) cultures. Int. J. Biol. Macromol. 134, 557 (2019).

    Article  CAS  Google Scholar 

  51. S. Kar, T. Kaur, and A. Thirugnanam: Microwave-assisted synthesis of porous chitosan-modified montmorillonite–hydroxyapatite composite scaffolds. Int. J. Biol. Macromol. 82, 628 (2016).

    Article  CAS  Google Scholar 

  52. L. Ren, V. Pandit, J. Elkin, T. Denman, J.A. Cooper, and S.P. Kotha: Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 5, 2337 (2013).

    Article  CAS  Google Scholar 

  53. D. Quéré: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).

    Article  CAS  Google Scholar 

  54. R. Junker, A. Dimakis, M. Thoneick, and J.A. Jansen: Effects of implant surface coatings and composition on bone integration: A systematic review. Clin. Oral Implants Res. 20, 185 (2009).

    Article  Google Scholar 

  55. H.H. Lu, S.D. Subramony, M.K. Boushell, and X. Zhang: Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann. Biomed. Eng. 38, 2142 (2010).

    Article  Google Scholar 

  56. J. Costa-Rodrigues, A. Fernandes, M.A. Lopes, and M.H. Fernandes: Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 8, 1137 (2012).

    Article  CAS  Google Scholar 

  57. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844 (2007).

    Article  CAS  Google Scholar 

  58. C. Aparicio, A. Padrós, and F.-J. Gil: In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. J. Mech. Behav. Biomed. Mater. 4, 1672 (2011).

    Article  CAS  Google Scholar 

  59. J. Chen, M.A. Birch, and S.J. Bull: Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. J. Mater. Sci. Mater. Med. 21, 277–282 (2010).

    Article  CAS  Google Scholar 

  60. N.B. Guerra: Obtenção e Avaliação Da Blenda Poliisopreno Epoxidado - Poli(Ácido Lático-Co-Glicólico) Para Engenharia de Tecidos. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, 2018.

    Google Scholar 

  61. D.R. Marques, L.A.L. dos Santos, M.A. O'Brien, S.H. Cartmell, and J.E. Gough: In vitro evaluation of poly(lactic-co-glycolic acid)/polyisoprene fibers for soft tissue engineering. J. Biomed. Mater. Res. B 105, 2581 (2017).

    Article  CAS  Google Scholar 

  62. K. Sungsanit, N. Kao, and S.N. Bhattacharya: Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52, 108 (2012).

    Article  CAS  Google Scholar 

  63. A. Marcilla and M. Beltran: Handbook of Plasticizers (ChemTec Publishing, Toronto, 2004).

    Google Scholar 

  64. Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, and X. Zhang: Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 49, 3834 (2013).

    Article  CAS  Google Scholar 

  65. R.T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, and K. Kern: Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 8, 1187 (2008).

    Article  CAS  Google Scholar 

  66. Z. Zhang and J. Sun: Research on the development of the centrifugal spinning. MATEC Web Conf. 95, 07003 (2017).

    Article  CAS  Google Scholar 

  67. Y. You, S.J. Lee, B.M. Min, and W.H. Park: Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J. Appl. Polym. Sci. 99, 1214 (2006).

    Article  CAS  Google Scholar 

  68. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna: Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46, 6128 (2005).

    Article  CAS  Google Scholar 

  69. A.R. Faramarzi, J. Barzin, and H. Mobedi: Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers Polym. 17, 1806 (2016).

    Article  CAS  Google Scholar 

  70. S.M. Troian, X.L. Wu, and S.A. Safran: Fingering instability in thin wetting films. Phys. Rev. Lett. 62, 1496 (1989).

    Article  CAS  Google Scholar 

  71. H.E. Huppert: Flow and instability of a viscous current down a slope. Nature 300, 427 (1982).

    Article  Google Scholar 

  72. F. Melo, J.F. Joanny, and S. Fauve: Fingering instability of spinning drops. Phys. Rev. Lett. 63, 1958 (1989).

    Article  CAS  Google Scholar 

  73. C.B. Danoux, D. Barbieri, H. Yuan, J.D. de Bruijn, C.A. van Blitterswijk, and P. Habibovic: In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4, 1 (2014).

    Article  Google Scholar 

  74. I. Rajzer: Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J. Mater. Sci. 49, 5799 (2014).

    Article  CAS  Google Scholar 

  75. M.H. Santos, M. De Oliveira, L.P.D.F. Souza, H.S. Mansur, and W.L. Vasconcelos: Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 7, 625 (2004).

    Article  CAS  Google Scholar 

  76. H. Kim, T. Himeno, T. Kokubo, and T. Nakamura: Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26, 4366 (2005).

    Article  CAS  Google Scholar 

  77. A. Olad and F.F. Azhar: The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram. Int. 40, 10061 (2014).

    Article  CAS  Google Scholar 

  78. L. Liverani, J. Lacina, J.A. Roether, E. Boccardi, M.S. Killian, P. Schmuki, D.W. Schubert, and A.R. Boccaccini: Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact. Mater. 3, 55 (2018).

    Article  Google Scholar 

  79. Z. Shahbazarab, A. Teimouri, A.N. Chermahini, and M. Azadi: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int. J. Biol. Macromol. 108, 1017 (2018).

    Article  CAS  Google Scholar 

  80. Y. Tsuneizumi, M. Kuwahara, K. Okamoto, and S. Matsumura: Chemical recycling of poly(lactic acid) based polymer blends using environmentally benign catalysts. Polym. Degrad. Stab. 95, 1387 (2010).

    Article  CAS  Google Scholar 

  81. S. Ramesh, C.Y. Tan, S.B. Bhaduri, and W.D. Teng: Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 33, 1363 (2007).

    Article  CAS  Google Scholar 

  82. T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Coordination for the Improvement of Higher Education Personnel (CAPES–Brazil), National Council for Scientific and Technological Development (CNPQ–Brazil), Research Foundation of the State of Rio Grande do Sul (FAPERGS–Brazil), Funding Authority for Studies and Projects (FINEP–Brazil), and Erasmus for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathália O. Muniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, N.O., Vechietti, F.A., Anesi, G.R. et al. Blend-based fibers produced via centrifugal spinning and electrospinning processes: Physical and rheological properties. Journal of Materials Research 35, 2905–2916 (2020). https://doi.org/10.1557/jmr.2020.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.189

Navigation