Skip to main content

Advertisement

Log in

Nanoporous metal–polymer composite membranes for organics separations and catalysis

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metallic thin-film composite membranes are produced by sputtering metal films onto commercial polymer membranes. The separations capability of the membrane substrate is enhanced with the addition of a 10 nm Ta film. The addition of a tantalum layer decreases the molecular weight cutoff of the membrane from 70 kDa dextran (19 nm) to below 5 kDa (6 nm). Water flux drops from 168 LMH/bar (LMH: liters/meters2/hour) (polymer support) to 8.8 LMH/bar (Ta composite). A nanoporous layer is also added to the surface through Mg/Pd film deposition and dealloying. The resulting nanoporous Pd is a promising catalyst with a ligament size of 4.1 ± 0.9 nm. The composite membrane's ability to treat water contaminated with chlorinated organic compounds (COCs) is determined. When pressurized with hydrogen gas, the nanoporous Pd composite removes over 70% of PCB-1, a model COC, with one pass. These nanostructured films can be incorporated onto membrane supports enabling diverse reactions and separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table 1
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. W.J. Lau, A.F. Ismail, N. Misdan, and M.A. Kassim: A recent progress in thin film composite membrane: A review. Desalination 287, 190 (2012).

    CAS  Google Scholar 

  2. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, and A.G. Fane: Spiral wound modules and spacers: Review and analysis. J. Membr. Sci. 242, 129 (2004).

    CAS  Google Scholar 

  3. A.G. Fane, R. Wang, and M.X. Hu: Synthetic membranes for water purification: Status and future. Angew. Chem. Int. Ed. 54, 3368 (2015).

    CAS  Google Scholar 

  4. J.R. Werber, C.O. Osuji, and M. Elimelech: Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Google Scholar 

  5. B.S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal: A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77 (2013).

    CAS  Google Scholar 

  6. J.E. Cadotte: Interfacially synthesized reverse osmosis membrane. USA patent 4,277,344 (1981)

    Google Scholar 

  7. D.M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A.M. Mikelonis, A. Achilli, A. Ghassemi, L.P. Padhye, S.A. Snyder, S. Curcio, C.D. Vecitis, H.A. Arafat, and J.H. Lienhard: A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81, 209 (2018).

    CAS  Google Scholar 

  8. P. Marchetti, M.F. Jimenez Solomon, G. Szekely, and A.G. Livingston: Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 114, 10735 (2014).

    CAS  Google Scholar 

  9. B. Zhu, M. Duke, L. Dumée, A. Merenda, E. Des Ligneris, L. Kong, P. Hodgson, and S. Gray: Short review on porous metal membranes–fabrication, commercial products, and applications. Membranes 8, 83 (2018).

    Google Scholar 

  10. J.-O. Kim, J.-T. Jung, and J. Chung: Treatment performance of metal membrane microfiltration and electrodialysis integrated system for wastewater reclamation. Desalination 202, 343 (2007).

    CAS  Google Scholar 

  11. L.F. Dumee, L. He, B. Lin, F.-M. Ailloux, J.-B. Lemoine, L. Velleman, F. She, M.C. Duke, J.D. Orbell, G. Erskine, P.D. Hodgson, S. Gray, and L. Kong: The fabrication and surface functionalization of porous metal frameworks–a review. J. Mater. Chem. A 1, 15185 (2013).

    CAS  Google Scholar 

  12. H. Wang, X. Hu, Z. Ke, C.Z. Du, L. Zheng, C. Wang, and Z. Yuan: Review: Porous metal filters and membranes for oil–water separation. Nanoscale Res. Lett. 13, 284 (2018).

    Google Scholar 

  13. J.E. Greene: Review article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol., A 35, 05C204 (2017).

    Google Scholar 

  14. R. Kukla: Magnetron sputtering on large scale substrates: An overview on the state of the art. Surf. Coat. Technol. 93, 1 (1997).

    Google Scholar 

  15. R. Ludwig, R. Kukla, and E. Josephson: Vacuum web coating–state of the art and potential for electronics. Proc. IEEE 93, 1483 (2005).

  16. W. Kittler and I. Ritchie: Continuous coating of indium tin oxide onto large area flexible substrates. Proc. SPIE 325, 61 (1982).

  17. M.J. Detisch, T.J. Balk, and D. Bhattacharyya: Synthesis of catalytic nanoporous metallic thin films on polymer membranes. Ind. Eng. Chem. Res. 57, 4420 (2018).

    CAS  Google Scholar 

  18. L. Nana, F. Yuanjing, L. Qingchen, and X. Changfa: Microstructure and performance of a porous polymer membrane with a copper nano-layer using vapor-induced phase separation combined with magnetron sputtering. Polymers 9, 524 (2017).

    Google Scholar 

  19. J.-E. Lim, S. Yoon, B.-U. Hwang, N.-E. Lee, and H.-K. Kim: Self-connected Ag nanoporous sponge embedded in sputtered polytetrafluoroethylene for highly stretchable and semi-transparent electrodes. Adv. Mater. Interfaces 6, 1801936 (2019).

    Google Scholar 

  20. J. Erlebacher: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc 151, 10 (2004).

    Google Scholar 

  21. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    CAS  Google Scholar 

  22. Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold leaf: “Ancient technology”/Advanced material. Adv. Mater. 16, 1897 (2004).

    CAS  Google Scholar 

  23. L. Wang, N. Briot, P. Swartzentruber, and T.J. Balk: Magnesium alloy precursor thin films for efficient, practical fabrication of nanoporous metals. Metall. Mater. Trans. A 45, 1 (2014).

    Google Scholar 

  24. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).

    CAS  Google Scholar 

  25. J.B. Cook, E. Detsi, Y. Liu, Y.-L. Liang, H.-S. Kim, X. Petrissans, B. Dunn, and S.H. Tolbert: Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-Ion battery anode. ACS Appl. Mater. Interfaces 9, 293 (2017).

    CAS  Google Scholar 

  26. Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, and J. Frenzel: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629 (2009).

    CAS  Google Scholar 

  27. E. Şeker, W.-C. Shih, and K.J. Stine: Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 43, 49 (2018).

    Google Scholar 

  28. C.K. Hwang, J.M. Kim, S. Hwang, J.H. Kim, C.H. Sung, B.M. Moon, K.H. Chae, J.P. Singh, S.H. Kim, S.S. Jang, S.W. Lee, H.C. Ham, S. Han, and J.Y. Kim: Porous strained Pt nanostructured thin-film electrocatalysts via dealloying for PEM fuel cells. Adv. Mater. Interfaces 7, 1901326 (2019).

    Google Scholar 

  29. J. Wang, Z. Wang, D. Zhao, and C. Xu: Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 832, 34 (2014).

    CAS  Google Scholar 

  30. W.-C. Li and T.J. Balk: Preparation and hydrogen absorption/desorption of nanoporous palladium thin films. Materials 2, 2496 (2009).

    CAS  Google Scholar 

  31. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).

    CAS  Google Scholar 

  32. T. Fujita, K. Higuchi, Y. Yamamoto, T. Tokunaga, S. Arai, and H. Abe: In-situ TEM study of a nanoporous Ni–Co catalyst used for the dry reforming of methane. Metals 7, 406 (2017).

    Google Scholar 

  33. Y. Ding and M. Chen: Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569 (2009).

    CAS  Google Scholar 

  34. B.Z. Wu, H.Y. Chen, S.F.J. Wang, C.M. Wai, W.S. Liao, and K.H. Chiu: Reductive dechlorination for remediation of polychlorinated biphenyls. Chemosphere 88, 757 (2012).

    CAS  Google Scholar 

  35. C. Schüth and M. Reinhard: Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Appl. Catal. B 18, 215 (1998).

    Google Scholar 

  36. B.P. Chaplin, M. Reinhard, W.F. Schneider, C. Schüth, J.R. Shapley, T.J. Strathmann, and C.J. Werth: Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ. Sci. Technol. 46, 3655 (2012).

    CAS  Google Scholar 

  37. C. Schüth, S. Disser, F. Schüth, and M. Reinhard: Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl. Catal., B 28, 147 (2000).

    Google Scholar 

  38. H.-L. Lien and W.-X. Zhang: Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Appl. Catal., B 77, 110 (2007).

    CAS  Google Scholar 

  39. B.-W. Zhu and T.-T. Lim: Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol. 41, 7523 (2007).

    CAS  Google Scholar 

  40. C. Grittini, M. Malcomson, Q. Fernando, and N. Korte: Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ. Sci. Technol. 29, 2898 (1995).

    CAS  Google Scholar 

  41. G.V. Lowry and M. Reinhard: Pd-catalyzed TCE dechlorination in groundwater: Solute effects, biological control, and oxidative catalyst regeneration. Environ. Sci. Technol. 34, 3217 (2000).

    CAS  Google Scholar 

  42. M. Ohring: Chapter 5 - Plasma and ion beam processing of thin films. In Materials Science of Thin Films, 2nd ed. M. Ohring, ed. (Academic Press, San Diego, 2002); p. 203.

    Google Scholar 

  43. C.M. Chan, T.M. Ko, and H. Hiraoka: Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24, 3 (1996).

    Google Scholar 

  44. M.S. Mauter, Y. Wang, K.C. Okemgbo, C.O. Osuji, E.P. Giannelis, and M. Elimelech: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3, 2861 (2011).

    CAS  Google Scholar 

  45. J. Wang, X. Chen, R. Reis, Z. Chen, N. Milne, B. Winther-Jensen, L. Kong, and L. Dumée: Plasma modification and synthesis of membrane materials–a mechanistic review. Membranes 8, 56 (2018).

    CAS  Google Scholar 

  46. J.C. Wataha and C.T. Hanks: Biological effects of palladium and risk of using palladium in dental casting alloys. J. Oral. Rehabil. 23, 309 (1996).

    CAS  Google Scholar 

  47. L. Joska, M. Marek, and J. Leitner: The mechanism of corrosion of palladium–silver binary alloys in artificial saliva. Biomaterials 26, 1605 (2005).

    CAS  Google Scholar 

  48. V. Smuleac, L. Bachas, and D. Bhattacharyya: Aqueous phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation. J. Membr. Sci. 346, 310 (2010).

    CAS  Google Scholar 

  49. L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko: Ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. ACS Appl. Mater. Interfaces 7, 5797 (2015).

    CAS  Google Scholar 

  50. V. Devaraj, J. Lee, J. Baek, and D. Lee: Fabrication of ultra-smooth 10 nm silver films without wetting layer. Appl. Sci. Converg. Technol. 25, 32 (2016).

    Google Scholar 

  51. J. Yun: Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27, 21 (2017).

    Google Scholar 

  52. W. Ho and K. Sirkar: Membrane Handbook, Vol. 2 (Springer Science + Business Media, LLC, New York, 1992), pp. 953.

    Google Scholar 

  53. S.R. Wickramasinghe, S.E. Bower, Z. Chen, A. Mukherjee, and S.M. Husson: Relating the pore size distribution of ultrafiltration membranes to dextran rejection. J. Membr. Sci. 340, 1 (2009).

    CAS  Google Scholar 

  54. S.G. Schultz and A.K. Solomon: Determination of the effective hydrodynamic radii of small molecules by viscometry. J. Gen. Physiol. 44, 1189 (1961).

    CAS  Google Scholar 

  55. R. Sander: Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399 (2015).

    CAS  Google Scholar 

  56. L.A. Giannuzzi and F.A. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197 (1999).

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSF KY EPSCoR grant (Grant 1355438) and NIH-NIEHS-SRC (Award No. P42ES007380). The authors thank Nicolas J. Briot at the UK Electron Microscopy Center, as well as John May and Megan Combs at the UK Environmental Training and Research Lab for help with FIB/SEM and GC/MS work, respectively. The authors also thank Solecta Inc., Oceanside, CA, for providing a flat sheet membrane for testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Bhattacharyya.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detisch, M.J., John Balk, T., Bezold, M. et al. Nanoporous metal–polymer composite membranes for organics separations and catalysis. Journal of Materials Research 35, 2629–2642 (2020). https://doi.org/10.1557/jmr.2020.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.176

Navigation