Skip to main content
Log in

Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. W.L. Li, K. Lu, and J.Y. Walz: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 57, 37 (2012).

    Article  CAS  Google Scholar 

  2. S.M. Miller, X. Xiao, and K.T. Faber: Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. J. Eur. Ceram. Soc. 35, 3595 (2015).

    Article  CAS  Google Scholar 

  3. K.L. Scotti and D.C. Dunand: Freeze casting–A review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 94, 243 (2018).

    Article  CAS  Google Scholar 

  4. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji, and Y. Goto: Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J. Mater. Sci. 36, 2523 (2001).

    Article  CAS  Google Scholar 

  5. D. Rozmanov and P.G. Kusalik: Anisotropy in the crystal growth of hexagonal ice, I h. J. Chem. Phys. 137, 094702 (2012).

    Article  Google Scholar 

  6. K. Araki and J.W.J.W. Halloran: New freeze-casting technique for ceramics with sublimable vehicles. J. Am. Ceram. Soc. 87, 1859 (2004).

    Article  CAS  Google Scholar 

  7. D.R. Stull: Vapor pressure of pure substances: Organic and inorganic compounds. Ind. Eng. Chem. 39, 517 (1947).

    Article  CAS  Google Scholar 

  8. R. Sepúlveda, A.A. Plunk, and D.C. Dunand: Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Mater. Lett. 142, 56 (2015).

    Article  Google Scholar 

  9. Y. Chino and D.C. Dunand: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

    Article  CAS  Google Scholar 

  10. H. Zhang, P. D'Angelo Nunes, M. Wilhelm, and K. Rezwan: Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J. Eur. Ceram. Soc. 36, 51 (2016).

    Article  Google Scholar 

  11. C.M. Pekor, P. Kisa, and I. Nettleship: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91, 3185 (2008).

    Article  CAS  Google Scholar 

  12. T. Waschkies, R. Oberacker, and M.J. Hoffmann: Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 5135 (2011).

    Article  CAS  Google Scholar 

  13. A. Preiss, B. Su, S. Collins, and D. Simpson: Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. J. Eur. Ceram. Soc. 32, 1575 (2012).

    Article  CAS  Google Scholar 

  14. C. Stolze, T. Janoschka, U.S. Schubert, F.A. Müller, and S. Flauder: Directional solidification with constant ice front velocity in the ice-templating process. Adv. Eng. Mater. 18, 111 (2016).

    Article  CAS  Google Scholar 

  15. P. Durán, J. Lachén, J. Plou, R. Sepúlveda, J. Herguido, and J.A. Peña: Behaviour of freeze-casting iron oxide for purifying hydrogen streams by steam-iron process. Int. J. Hydrogen Energy 41, 19518 (2016).

    Article  Google Scholar 

  16. X. Wang, K. Li, L. Jia, Q. Zhang, S.P. Jiang, B. Chi, J. Pu, L. Jian, and D. Yan: Porous Ni–Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors. J. Power Sources 277, 474 (2015).

    Article  CAS  Google Scholar 

  17. S.K. Wilke and D.C. Dunand: Structural evolution of directionally freeze-cast iron foams during oxidation/reduction cycles. Acta Mater. 162, 90 (2019).

    Article  CAS  Google Scholar 

  18. M. Luo, Y. Yi, S. Wang, Z. Wang, M. Du, J. Pan, and Q. Wang: Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev. 81, 3186 (2018).

    Article  CAS  Google Scholar 

  19. N. Xu, X. Li, X. Zhao, J.B. Goodenough, and K. Huang: A novel solid oxide redox flow battery for grid energy storage. Energy Environ. Sci. 4, 4942 (2011).

    Article  CAS  Google Scholar 

  20. A. Leonide, W. Drenckhahn, H. Greiner, and H. Landes: Long term operation of rechargeable high temperature solid oxide batteries. J. Electrochem. Soc. 161, 9, A1297–A1301 (2014).

    Article  CAS  Google Scholar 

  21. S. Trocino, S.C. Zignani, M. Lo Faro, V. Antonucci, and A.S. Aricò: Iron–air battery operating at high temperature. Energy Technol. 5, 670 (2017).

    Article  CAS  Google Scholar 

  22. A. Inoishi, T. Sakai, Y.W. Ju, S. Ida, and T. Ishihara: Improved cycle stability of Fe-air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor. J. Power Sources 262, 310 (2014).

    Article  CAS  Google Scholar 

  23. T. Um, S.K. Wilke, H. Choe, and D.C. Dunand: Effects of pore morphology on the cyclical oxidation/reduction of iron foams created via camphene-based freeze casting. J. Alloy. Compd. (2020). Available at: https://doi.org/10.1016/j.jallcom.2020.156278 (accessed July 5th, 2020).

    Google Scholar 

  24. H. Park, T. Um, K. Hong, J.S. Kang, H.-S. Nam, K. Kwon, Y.-E. Sung, and H. Choe: Effects of powder carrier on the morphology and compressive strength of iron foams: Water vs camphene. Metall. Mater. Trans. B 49, 2182 (2018).

    Article  CAS  Google Scholar 

  25. R. Trivedi: Interdendritic spacing: Part II. A comparison of theory and experiment. Metall. Trans. A Phys. Metall. Mater. Sci. 15A, 977 (1984).

    Article  CAS  Google Scholar 

  26. W. Kurz and D.J. Fisher: Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall. 29, 11 (1981).

    Article  CAS  Google Scholar 

  27. E. Çadirli, N. Marasli, B. Bayender, and M. Gündüz: Dependency of the microstructure parameters on the solidification parameters for camphene. Mater. Res. Bull. 35, 985 (2000).

    Article  Google Scholar 

  28. P.J. Lloreda-Jurado, E.M. Pérez-Soriano, A. Paúl, J. Herguido, J.A. Peña, and R. Sepúlveda: Doped iron oxide scaffolds with gradient porosity fabricated by freeze casting: pore morphology prediction and processing parameters. Mater. Sci. Technol. 36 (11), 1227–1237 (2020).

    Article  CAS  Google Scholar 

  29. N.O. Shanti, K. Araki, and J.W. Halloran: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 2444 (2006).

    Article  CAS  Google Scholar 

  30. S. Deville, E. Saiz, and A.P. Tomsia: Ice-templated porous alumina structures. Acta Mater. 55, 1965 (2007).

    Article  CAS  Google Scholar 

  31. S.K. Wilke and D.C. Dunand: In operando tomography reveals degradation mechanisms in lamellar iron foams during redox cycling at 800°C. J. Power Sources 448, 227463 (2020).

    Article  CAS  Google Scholar 

  32. T. Hildebrand and P. Rüegsegger: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work has been provided by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), through the project MAT2016-76713-P, and by the U.S. National Science Foundation (NSF CMMI-1562941). P.J. also thanks the Universidad de Sevilla for financial support (Grant PIF II.2A, through VI Plan Propio de Investigación). This work made use of the MatCI Facility at Northwestern University, which receives support from the MRSEC Program (NSF DMR-1720139). Tomography experiments were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT), Sector 5 of the Advanced Photon Source, operated by Argonne National Laboratory (DOE DE-AC02-06CH11357). The authors gratefully acknowledge Dr. William Guise (DND-CAT) for assistance in collecting and processing the tomography data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sepúlveda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloreda-Jurado, P., Wilke, S., Scotti, K. et al. Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment. Journal of Materials Research 35, 2587–2596 (2020). https://doi.org/10.1557/jmr.2020.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.175

Navigation