Skip to main content

Advertisement

Log in

Effects of Powder Carrier on the Morphology and Compressive Strength of Iron Foams: Water vs Camphene

  • Technical Publication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With its well-known popularity in structural applications, considerable attention has recently been paid to iron (Fe) and its oxides for its promising functional applications such as biodegradable implants, water-splitting electrodes, and the anode of lithium-ion batteries. For these applications, iron and its oxides can be even further utilized in the form of porous structures. In order to control the pore size, shape, and amount, we synthesized Fe foams using suspensions of micrometric Fe2O3 powder reduced to Fe via freeze casting in water or liquid camphene as a solvent through sublimation of either ice or camphene under 5 pct H2/Ar gas and sintering. We then compared them and found that the resulting Fe foam using water as a solvent (p = 71.7 pct) showed aligned lamellar macropores replicating ice dendrite colonies, while Fe foam using camphene as a solvent (p = 68.0 pct) exhibited interconnected equiaxed macropores replicating camphene dendrites. For all directions with respect to the loading axis, the compressive behavior of the water-based Fe foam with a directional elongated wall pore structure was anisotropic (11.6 ± 0.9 MPa vs 7.8 ± 0.8 MPa), whereas that of the camphene-based Fe foam with a random round pore structure was nearly isotropic (12.0 ± 1.1 MPa vs 11.6 ± 0.4 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Chen, T. Hoang, S. Ma: Inorg. Chem., 2012, vol. 51, pp. 12600-02.

    Article  CAS  Google Scholar 

  2. A.E. Gash, T.M. Tillotson, J.H. Satcher Jr., J.F. Poco, L.W. Hrubesh, R.L. Simpson: Chem. Mater., 2001, vol. 13, pp. 999-1007.

    Article  CAS  Google Scholar 

  3. A.B. Cundy, L. Hopkinson, R.L.D. Whitby: Sci. Total Environ., 2008, vol. 400, pp. 42-51.

    Article  CAS  Google Scholar 

  4. J. Chen, L. Xu, W. Li, X. Gou: Adv. Mater., 2005, vol. 17, pp. 582-86.

    Article  CAS  Google Scholar 

  5. Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan: Nano Energy, 2014, vol. 5, pp. 60-66.

    Article  CAS  Google Scholar 

  6. Z. Liu, T. Fan, W. Zhang, D. Zhang: Microporous Mesoporous Mater., 2005, vol. 85, pp. 82-88.

    Article  CAS  Google Scholar 

  7. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, MA, 2000.

    Google Scholar 

  8. J. Banhart: Prog. Mater Sci., 2001, vol. 46, pp. 559-632.

    Article  CAS  Google Scholar 

  9. L-P. Lefebvre, J. Banhart, D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–87.

    Article  CAS  Google Scholar 

  10. G.J. Davies, S. Zhen: J. Mater. Sci., 1983, vol. 18, pp. 1899–1911.

    Article  CAS  Google Scholar 

  11. C. Park, S. R. Nutt: J. Mater. Sci. Eng. A, 2001, vol. 299, pp. 68-74.

    Article  Google Scholar 

  12. J. Capek, D. Vojtech: Mater. Sci. Eng., 2014, vol. 43, pp. 494–501.

    Article  CAS  Google Scholar 

  13. S. K. Hyun, H. Nakajima: Adv. Eng. Mater., 2002, vol. 4, pp. 741-44.

    Article  CAS  Google Scholar 

  14. Y. Zhang, R. J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26, pp. 803-12.

    Article  CAS  Google Scholar 

  15. S. Cao, Y. Zhu: Acta. Mater., 2009, vol. 57, pp. 2154-65.

    Article  CAS  Google Scholar 

  16. S. Hyun, T. Ikeda, H. Nakajima: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 201-05.

    Article  CAS  Google Scholar 

  17. T. Ikeda, H. Nakajima, T. Aoki: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 77-86.

    Article  CAS  Google Scholar 

  18. H. Park, Y. Noh, H. Choi, K. Hong, K. Kwon and H. Choe: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4760–66.

    Article  CAS  Google Scholar 

  19. A.A. Plunk, D.C. Dunand: Mater. Lett., 2017, vol. 191, pp. 112–15.

    Article  CAS  Google Scholar 

  20. R. Sepulveda, A.A. Plunk, D.C. Dunand: Mater. Lett., 2015, vol. 142, pp. 56–59.

    Article  CAS  Google Scholar 

  21. S. Deville: Adv. Eng. Mater., 2008, vol. 10, pp. 155–69.

    Article  CAS  Google Scholar 

  22. S. Deville, E. Saiz, A.P. Tomsia: Biomaterials, 2006, vol. 27, pp. 5480–89.

    Article  CAS  Google Scholar 

  23. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Science, 2006, vol. 311, pp. 515–18.

    Article  CAS  Google Scholar 

  24. S. Deville, S. Meille, J. Seuba: Sci. Technol. Adv. Mater., 2015, vol. 16, 043501.

    Article  Google Scholar 

  25. K. Araki, J.W. Halloran: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1859–63.

    Article  CAS  Google Scholar 

  26. C. Hong, J. Du, J. Liang, X. Zhang, J. Han: Ceram. Inter., 2011, vol. 37, pp. 3717–22.

    Article  CAS  Google Scholar 

  27. H. Park, M. Choi, H. Choe, D.C. Dunand: Mater. Sci. Eng. A, 2017, vol. 679, pp. 435–45.

    Article  CAS  Google Scholar 

  28. H. Park, H. -H. Cho, K. Kim, K. Hong, J. -H. Kim,H. Choe, D. C. Dunand: Acta Mater., 2018, vol. 142, pp. 213–25.

    Article  CAS  Google Scholar 

  29. R. Chen, C.-A. Wang, Y. Huang, L. Ma, W. Lin, J. Am. Ceram. Soc. 2007, 90, 3478.

    Article  CAS  Google Scholar 

  30. H.-Y. Lin, Y.-W. Chen, C. Li: Thermochim. Acta, 2003, vol. 400, pp. 61–67.

    Article  CAS  Google Scholar 

  31. H. Jo, M. Kim, H. Choi, Y.-E. Sung, H. Choe, D.C. Dunand, Morphological study of directionally freeze-cast nickel foams, Metall. Mater. Trans. E 3 (2016) 46-54.

    Google Scholar 

  32. K. Nam, H.-G. Kim, H. Choi, H. Park, J.S. Kang, Y.-E. Sung, H.C. Lee, H. Choe: J. Electo. Mater., 2017, vol. 46, pp. 3748–56.

    Article  CAS  Google Scholar 

  33. Y. Chino, D.C. Dunand: Acta Mater., 2008, vol. 56, pp. 105-13.

    Article  CAS  Google Scholar 

  34. J.C. Li, D.C. Dunand: Acta Mater., 2011, vol. 59, pp. 146–58.

    Article  CAS  Google Scholar 

  35. L.J. Gibson, M.F. Ashby: Proc. R. Soc. Lond. A, 1982, vol. 382, pp. 43–59.

    Article  CAS  Google Scholar 

  36. E. Hong, B.Y. Ahn, D. Shoji, J.A. Lewis, D.C. Dunand: Adv. Eng. Mater., 2011, vol. 13, pp. 1122–27.

    Article  CAS  Google Scholar 

  37. F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, Russell Township, OH, 2008.

    Google Scholar 

  38. H. Choi, S. Shilko, J. Gubicza, H. Choe: J. Mech. Behav. Biomed. Mater., 2017, vol. 72, pp. 66–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NRF-2016-Fostering Core Leaders of the Future Basic Science Program/Global Ph.D. Fellowship Program (2016H1A2A1909161) from the National Research Foundation (NRF) of Korea. This research was also supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (2017K1A3A1A30083363). Nam and Choe acknowledge supports from the National Research Foundation (NRF) of Korea (2009-0093814; 2017R1A2B4012871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeman Choe.

Additional information

Manuscript submitted December 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Um, T., Hong, K. et al. Effects of Powder Carrier on the Morphology and Compressive Strength of Iron Foams: Water vs Camphene. Metall Mater Trans B 49, 2182–2190 (2018). https://doi.org/10.1007/s11663-018-1302-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1302-z

Keywords

Navigation