Skip to main content
Log in

Complications of using thin film geometries for nanocrystalline thermal stability investigations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the sputter deposition of Cu-7V and Cu-27V (at.%) alloy films in an attempt to yield a “clean” alloy to investigate nanocrystalline stability. Films grown in high vacuum chambers can mitigate processing contaminates which convolute the identification of nanocrystalline stability mechanism(s). The initial films were very clean with carbon and oxygen contents ranging between ~0.01 and 0.38 at.%. Annealing at 400 °C/1 h facilitated the clustering of vanadium at high-angle grain boundary triple junctions. At 800 °C/1 h annealing, the Cu-7V film lost its nanocrystalline grain sizes with the vanadium partitioned to the free surface; the Cu-27V retained its nanocrystalline grains with vanadium clusters in the matrix, but surface solute segregation was present. Though the initial alloy and vacuum annealing retained the low contamination levels sought, the high surface area-to-volume ratio of the film, coupled with high segregation tendencies, enabled this system to phase separate in such a manner that the stability mechanisms that were to be studied were lost at high temperatures. This illustrates obstacles in using thin films to address nanocrystalline stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Table 2
Figure 2
Figure 3
Table 3
Figure 4

Similar content being viewed by others

References

  1. A. Detor and C. Schuh: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55(12), 4221 (2007).

    Article  CAS  Google Scholar 

  2. C. Koch, R. Scattergood, K. Darling, and J. Semones: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23–24), 7264 (2008).

    Article  CAS  Google Scholar 

  3. C. Koch, R. Scattergood, M. Saber, and H. Kotan: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28(13), 1785 (2013).

    Article  CAS  Google Scholar 

  4. E. Nes, N. Ryum, and O. Hunderi: On the zener drag. Acta Metall. 33(1), 11 (1985).

    Article  CAS  Google Scholar 

  5. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood: Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).

    Article  CAS  Google Scholar 

  6. A. Khalajhedayati and T.J. Rupert: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67(12), 2788 (2015).

    Article  CAS  Google Scholar 

  7. F. Liu and R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth. 264(1–3), 385 (2004).

    Google Scholar 

  8. J. Weissmuller: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179, 102 (1994).

    Article  Google Scholar 

  9. Y. Chen, Y. Liu, F. Khatkhatay, C. Sun, H. Wang, and X. Zhang: Significant enhancement in the thermal stability of nanocrystalline metals via immiscible tri-phases. Scr. Mater. 67(2), 177 (2012).

    Article  CAS  Google Scholar 

  10. D. Gupta: Diffusion, solute segregations and interfacial energies in some material: An overview. Interface Sci. 11(1), 7 (2003).

    Article  CAS  Google Scholar 

  11. T. Chookajorn and C.A. Schuh: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20at.% Ti. Acta Mater. 73, 128 (2014).

    Article  CAS  Google Scholar 

  12. H.A. Murdoch and C.A. Schuh: Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28(16), 2154 (2013).

    Article  CAS  Google Scholar 

  13. K.A. Darling, B.K. VanLeeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, and S.N. Mathaudhu: Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528(13–14), 4365 (2011).

    Article  CAS  Google Scholar 

  14. H. Peng, Y. Chen, and F. Liu: Effects of alloying on nanoscale grain growth in substitutional binary alloy system: Thermodynamics and kinetics. Metall. Mater. Trans. A 46A(11), 5431 (2015).

    Article  CAS  Google Scholar 

  15. A. Detor and C. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55(1), 371 (2007).

    Article  CAS  Google Scholar 

  16. T. Rupert, W. Cai, and C. Schuh: Abrasive wear response of nanocrystalline Ni-W alloys across the Hall-Petch breakdown. Wear 298, 120 (2013).

    Article  CAS  Google Scholar 

  17. V. Novikov: Grain growth in nanocrystalline materials. Mater. Lett. 159, 510 (2015).

    Article  CAS  Google Scholar 

  18. M. Hillert and B. Sundman: A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall. 24(8), 731 (1976).

    Article  Google Scholar 

  19. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).

    Article  CAS  Google Scholar 

  20. J.R. Trelewicz and C.A. Schuh: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79(9), 094112 (2009).

    Article  CAS  Google Scholar 

  21. K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu: Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput. Mater. Sci. 84, 255 (2014).

    Article  CAS  Google Scholar 

  22. M. Saber, C. Koch, and R. Scattergood: Thermodynamic grain size stabilization models: An overview. Mater. Res. Lett. 3(2), 65 (2015).

    Article  CAS  Google Scholar 

  23. S. Sooraj, V. Muthaiah, P. Kang, C. Koch, and S. Mula: Microstructural evolution and thermal stability of Fe-Zr metastable alloys developed by mechanical alloying followed by annealing. Philos. Mag. 96(25), 2649 (2016).

    Article  CAS  Google Scholar 

  24. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

    Article  CAS  Google Scholar 

  25. J. Weissmüller: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).

    Article  Google Scholar 

  26. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).

    Article  CAS  Google Scholar 

  27. J. Drolet and A. Galibois: Impurity-drag effect on grain growth. Acta Metall. 16(12), 1387 (1968).

    Article  Google Scholar 

  28. F. Abdeljawad and S.M. Foiles: Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model. Acta Mater. 101, 159 (2015).

    Article  CAS  Google Scholar 

  29. C.S. Smith: Introduction to grains, phases, and interfaces: an interpretation of microstructure. Trans. Metall. Soc. AIME 175, 15 (1948).

    Google Scholar 

  30. B. Farber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48(3), 789 (2000).

    Article  CAS  Google Scholar 

  31. T. Hentschel, D. Isheim, R. Kirchheim, F. Muller, and H. Kreye: Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48(4), 933 (2000).

    Article  CAS  Google Scholar 

  32. T. Rojhirunsakool, K.A. Darling, M.A. Tschopp, G.P.P. Pun, Y. Mishin, R. Banerjee, and L.J. Kecskes: Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu-Ta solid solution. MRS Commun. 5(2), 333 (2015).

    Article  CAS  Google Scholar 

  33. T. Chookajorn, M. Park, and C.A. Schuh: Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr. J. Mater. Res. 30(2), 151 (2015).

    Article  CAS  Google Scholar 

  34. J.W. Cahn: The impurity-drag effect in grain boundary motion. Acta Mater. 10, 789 (1962).

    Article  CAS  Google Scholar 

  35. A. Detor and C. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).

    Article  CAS  Google Scholar 

  36. H.A. Murdoch and C.A. Schuh: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).

    Article  CAS  Google Scholar 

  37. C. O'Brien, C. Barr, P. Price, K. Hattar, and S. Foiles: Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. J. Mater. Sci. 53(4), 2911 (2018).

    Article  CAS  Google Scholar 

  38. X. Zhou, X.-x. Yu, T. Kaub, R.L. Martens, and G.B. Thompson: Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci. Rep. 6, 34642 (2016).

    Article  CAS  Google Scholar 

  39. M. Kapoor, T. Kaub, K.A. Darling, B.L. Boyce, and G.B. Thompson: An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb. Acta Mater. 126, 564 (2017).

    Article  CAS  Google Scholar 

  40. B. Clark, K. Hattar, M. Marshall, T. Chookajorn, B. Boyce, and C. Schuh: Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68(6), 1625 (2016).

    Article  CAS  Google Scholar 

  41. C.J. Marvel, P.R. Cantwell, and M.P. Harmer: The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys. Scr. Mater. 96, 45 (2015).

    Article  CAS  Google Scholar 

  42. C.J. Marvel, B.C. Hornbuckle, K.A. Darling, and M.P. Harmer: Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy. J. Mater. Sci. 54(4), 3496 (2019).

    Article  CAS  Google Scholar 

  43. J.B. Seol, C.M. Kwak, J.C. Han, K.H. Baek, and Y.K. Jeong: Correlative transmission electron microscopy and atom probe tomography on field evaporation mechanism of a bulk LaAlO3 oxide. Appl. Surf. Sci. 479, 828 (2019).

    Article  CAS  Google Scholar 

  44. M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, and S. Goto: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112(12), 126103 (2014).

    Article  CAS  Google Scholar 

  45. X. Zhou, and G.B. Thompson: Charge-state field evaporation behavior in Cu(V) nanocrystalline alloys. Microsc. Microanal. 25, 501 (2019).

    Article  CAS  Google Scholar 

  46. P. Stender, Z. Balogh, and G. Schmitz: Triple junction segregation in nanocrystalline multilayers. Phys. Rev. B. 83(12), 121407 (2011).

    Article  CAS  Google Scholar 

  47. M.R. Chellali, Z. Balogh, and G. Schmitz: Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu. Ultramicroscopy 132, 164 (2013).

    Article  CAS  Google Scholar 

  48. R.D. Doherty: Grain coarsening–Insights from curvature modeling Cyril Stanley Smith Lecture. Mater. Sci. Forum 715–716, 1 (2012).

    Article  CAS  Google Scholar 

  49. P.P. Shetty, M.G. Emigh, and J.A. Krogstad: Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys. J. Mater. Res. 34(1), 48 (2019).

    Article  CAS  Google Scholar 

  50. X. Zhou and G.B. Thompson: In situ TEM observations of initial oxidation behavior in Fe-rich Fe-Cr alloys. Surf. Coat. Technol. 357, 332 (2019).

    Article  CAS  Google Scholar 

  51. Y.F. Qin and S.Q. Wang: Ab-initio study of surface segregation in aluminum alloys. Appl. Surf. Sci. 399, 351 (2017).

    Article  CAS  Google Scholar 

  52. Y.H. Chang, W.J. Lu, J. Guenole, L.T. Stephenson, A. Szczpaniak, P. Kontis, A.K. Ackerman, F.F. Dear, I. Mouton, X.K. Zhong, S.Y. Zhang, D. Dye, C.H. Liebscher, D. Ponge, S. Korte-Kerzel, D. Raabe, and B. Gault: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nat. Commun. 10, 942 (2019).

    Article  CAS  Google Scholar 

  53. K. Hoshino, Y. Iijima, and K.I. Hirano: Diffusion of vanadium, chromium, and manganese in copper. Metall. Trans. A 8(3), 469 (1977).

    Article  Google Scholar 

  54. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, and L. Zepeda-Ruiz: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B. 85(18), 184203 (2012).

    Article  CAS  Google Scholar 

  55. L.A. Giannuzzi and F.A. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197 (1999).

    Article  Google Scholar 

  56. X. Zhou and G.B. Thompson: The influence of alloying interactions on thin film growth stresses. Appl. Surf. Sci. 463, 545 (2019).

    Article  CAS  Google Scholar 

  57. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6(5), 437 (2000).

    Article  CAS  Google Scholar 

  58. D.J. Barton, B.C. Hornbuckle, K.A. Darling, and G.B. Thompson: The influence of isoconcentration surface selection in quantitative outputs from proximity histograms. Microsc. Microanal. 25, 401 (2019).

    Article  CAS  Google Scholar 

  59. Y.M. Chen, P.H. Chou, and E.A. Marquis: Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel. J. Nucl. Mater. 451(1-3), 130 (2014).

    Article  CAS  Google Scholar 

  60. L.T. Stephenson, M.P. Moody, P.V. Liddicoat, and S.P. Ringer: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13(6), 448 (2007).

    Article  CAS  Google Scholar 

  61. E. Marquis and J. Hyde: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng., Rep. 69(4–5), 37 (2010).

    Article  CAS  Google Scholar 

  62. J. Li: AtomEye: an efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11(2), 173 (2003).

    Article  Google Scholar 

  63. S. Alexander: Visualization and analysis of atomistic simulation data with OVITO: The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).

    Article  Google Scholar 

  64. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge NSF-DMR-1709803 for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Thompson.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.174.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Kaub, T., Vogel, F. et al. Complications of using thin film geometries for nanocrystalline thermal stability investigations. Journal of Materials Research 35, 2087–2097 (2020). https://doi.org/10.1557/jmr.2020.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.174

Navigation