Skip to main content
Log in

Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Distinguished by a marked combination of high strength and high fracture toughness, 18Ni-300 maraging steel (MS) is widely used for intricate tool and die applications. MS is also amenable to the powder bed fusion additive manufacturing process, providing unique opportunities to make small features and incorporate cooling channels in molds. In this study, tensile test samples were fabricated using selective laser melting to investigate the effects of built height and orientations on the evolution of the microstructure and the mechanical properties of the samples. The microstructure of the as-fabricated samples consists of the primary a-martensite phase and fine cellular microstructure (~0.66–0.83 µm) with the retained austenite ?-phase aggregated at the boundaries of the cells, resulting in an enhanced mechanical performance compared with traditional counterparts under the same condition (without post-heat treatments). Random grain orientations with weak textures are revealed in all samples. The XY-built samples display better tensile performance when compared to the Z-built samples due to the fine grain sizes and the retained ? phase. The bottom of the Z-built sample exhibits a higher hardness than other parts of the sample, which could be attributed to its finer cellular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Standard: Standard Terminology for Additive Manufacturing Technologies (ASTM International F2792-12a, West Conshohocken, PA, 2012).

  2. X. Wang and K. Chou: Effect of support structures on Ti-6Al-4 V overhang parts fabricated by powder bed fusion electron beam additive manufacturing. J. Mater. Process. Technol.257, 65 (2018).

    Article  CAS  Google Scholar 

  3. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng: The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd.513, 518 (2012).

    Article  CAS  Google Scholar 

  4. X. Wang, T. Keya, and K. Chou: Build height effect on the Inconel 718 parts fabricated by selective laser melting. Procedia Manuf.5, 1006 (2016).

    Article  Google Scholar 

  5. K.D. Ramkumar, B.M. Kumar, M.G. Krishnan, S. Dev, A.J. Bhalodi, N. Arivazhagan, and S. Narayanan: Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718. Mater. Sci. Eng. A639, 234 (2015).

    Article  CAS  Google Scholar 

  6. D. Ma, A.D. Stoica, Z. Wang, and A.M. Beese: Crystallographic texture in an additively manufactured nickel-base superalloy. Mater. Sci. Eng. A684, 47 (2017).

    Article  CAS  Google Scholar 

  7. Z. Qian, S. Chumbley, and E. Johnson: The effect of specimen dimension on residual stress relaxation of carburized and quenched steels. Mater. Sci. Eng. A529, 246 (2011).

    Article  CAS  Google Scholar 

  8. L. Santos, L. Borrego, J. Ferreira, J. de Jesus, J. Costa, and C. Capela: Effect of heat treatment on the fatigue crack growth behaviour in additive manufactured AISI 18Ni300 steel. Theor. Appl. Fract. Mech.102, 10 (2019).

    Article  CAS  Google Scholar 

  9. M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev: Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Mater. Sci. Eng. A742, 584 (2019).

    Article  CAS  Google Scholar 

  10. H. Azizi, R. Ghiaasiaan, R. Prager, M. Ghoncheh, K.A. Samk, A. Lausic, W. Byleveld, and A. Phillion: Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting. Addit. Manuf.27, 389 (2019).

    CAS  Google Scholar 

  11. E.A. Jägle, P.-P. Choi, J. Van Humbeeck, and D. Raabe: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res.29, 2072 (2014).

    Article  CAS  Google Scholar 

  12. S. Bodziak, K.S. Al-Rubaie, L. Dalla Valentina, F.H. Lafratta, E.C. Santos, A.M. Zanatta, and Y. Chen: Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 C for 2 h. Mater. Charact.151, 73 (2019).

    Article  CAS  Google Scholar 

  13. C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des.134, 23 (2017).

    Article  CAS  Google Scholar 

  14. C. Liu, Z. Cai, Y. Dai, N. Huang, F. Xu, and C. Lao: Experimental comparison of the flow rate and cooling performance of internal cooling channels fabricated via selective laser melting and conventional drilling process. Int. J. Adv. Manuf. Technol.96, 2757 (2018).

    Article  Google Scholar 

  15. Y. Bai, Y. Yang, Z. Xiao, and D. Wang: Selective laser melting of maraging steel: Mechanical properties development and its application in mold. Rapid Prototyp. J.24, 623 (2018).

    Article  Google Scholar 

  16. A. Suzuki, R. Nishida, N. Takata, M. Kobashi, and M. Kato: Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf.28, 160 (2019).

    CAS  Google Scholar 

  17. Z. Qian, S. Chumbley, T. Karakulak, and E. Johnson: The residual stress relaxation behavior of weldments during cyclic loading. Metall. Mat. Trans. A44, 3147 (2013).

    Article  CAS  Google Scholar 

  18. J. Mutua, S. Nakata, T. Onda, and Z.-C. Chen: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des.139, 486 (2018).

    Article  CAS  Google Scholar 

  19. F.F. Conde, J.D. Escobar, J. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, and J.A. Avila: Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel. Mater. Sci. Eng. A758, 192 (2019).

    Article  CAS  Google Scholar 

  20. R. Casati, J.N. Lemke, A. Tuissi, and M. Vedani: Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals6, 218 (2016).

    Article  Google Scholar 

  21. K. Monkova, I. Zetkova, L. Kučerová, M. Zetek, P. Monka, and M. Daňa: Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch. Appl. Mech.89, 791 (2019).

    Article  Google Scholar 

  22. B. Mooney, K.I. Kourousis, and R. Raghavendra: Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit. Manuf.25, 19 (2019).

    CAS  Google Scholar 

  23. C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang: Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci. Technol. Adv. Mater.19, 746 (2018).

    CAS  Google Scholar 

  24. S. Yin, C. Chen, X. Yan, X. Feng, R. Jenkins, P. O’Reilly, M. Liu, H. Li, and R. Lupoi: The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf.22, 592 (2018).

    CAS  Google Scholar 

  25. Y. Bai, D. Wang, Y. Yang, and H. Wang: Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. A760, 105 (2019).

    Article  CAS  Google Scholar 

  26. EOS GmbH: Material Data Sheet EOSINT M 280 EOSINT M 270 (2011). http://ip-saas-eos-cms.s3.amazonaws.com/public/1af123af9a636e61/042696652ecc69142c8518dc772dc113/EOS_MaragingSteel_MS1_en.pdf

  27. Z. Wang, T.A. Palmer, and A.M. Beese: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater.110, 226 (2016).

    Article  CAS  Google Scholar 

  28. P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, and J. Wei: Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater. Des.168, 107576 (2019).

    Article  CAS  Google Scholar 

  29. P. Wang, J. Song, M.L.S. Nai, and J. Wei: Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting. Addit. Manuf.33, 101088 (2020).

    CAS  Google Scholar 

  30. A. Kaplan: A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D: Appl. Phys.27, 1805 (1994).

    Article  CAS  Google Scholar 

  31. C. Panwisawas, B. Perumal, R.M. Ward, N. Turner, R.P. Turner, J.W. Brooks, and H.C. Basoalto: Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater.126, 251 (2017).

    Article  CAS  Google Scholar 

  32. P. Wang, M.H. Goh, Q. Li, M.L.S. Nai, and J.J.V. Wei: Effect of defects and specimen size with rectangular cross-section on the tensile properties of additively manufactured components. Virtual and Physical Prototyping1, 1 (2020).

    Article  Google Scholar 

  33. P. Li, D. Warner, J. Pegues, M. Roach, N. Shamsaei, and N. Phan: Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4 V. Int. J. Fatigue120, 342 (2019).

    Article  CAS  Google Scholar 

  34. S.L. Lu, H.P. Tang, S.M.L. Nai, Y.Y. Sun, P. Wang, J. Wei, and M. Qian: Intensified texture in selective electron beam melted Ti-6Al-4 V thin plates by hot isostatic pressing and its fundamental influence on tensile fracture and properties. Mater. Charact.152, 162 (2019).

    Article  CAS  Google Scholar 

  35. X. Wang and K. Chou: Effects of thermal cycles on the microstructure evolution of Inconel 718 during selective laser melting process. Addit. Manuf.18, 1 (2017).

    Google Scholar 

  36. S. Holland, X. Wang, J. Chen, W. Cai, F. Yan, and L. Li: Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J. Alloys Compd.784, 182 (2019).

    Article  CAS  Google Scholar 

  37. X. Wang and K. Chou: Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int. J. Adv. Manuf. Technol.100, 2147 (2019).

    Article  Google Scholar 

  38. E. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B64, 747 (1951).

    Article  Google Scholar 

  39. A. Hozoorbakhsh, M.I.S. Ismail, and N.B.A. Aziz: A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int. Commun. Heat Mass Transf.68, 178 (2015).

    Article  CAS  Google Scholar 

  40. H. Tan, Z. Luo, Y. Li, F. Yan, R. Duan, and Y. Huang: Effect of strengthening particles on the dry sliding wear behavior of Al2O3–M7C3/Fe metal matrix composite coatings produced by laser cladding. Wear324, 36 (2015).

    Article  CAS  Google Scholar 

  41. C. Todaro, M. Easton, D. Qiu, D. Zhang, M. Bermingham, E. Lui, M. Brandt, D. StJohn, and M. Qian: Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun.11, 1 (2020).

    Article  CAS  Google Scholar 

  42. L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd.615, 338 (2014).

    Article  CAS  Google Scholar 

  43. L. Kučerová, I. Zetková, A. Jandová, and M. Bystrianský: Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater. Sci. Eng. A750, 70 (2019).

    Article  CAS  Google Scholar 

  44. B. Mooney, K.I. Kourousis, R. Raghavendra, and D. Agius: Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater. Sci. Eng. A745, 115 (2019).

    Article  CAS  Google Scholar 

  45. G. Meneghetti, D. Rigon, D. Cozzi, W. Waldhauser, and M. Dabalà: Influence of build orientation on static and axial fatigue properties of maraging steel specimens produced by additive manufacturing. Procedia Struct. Integr.7, 149 (2017).

    Article  Google Scholar 

  46. T.H. Becker and D. Dimitrov: The achievable mechanical properties of SLM produced maraging steel 300 components. Rapid Prototyp. J.22, 487 (2016).

    Article  Google Scholar 

  47. J. Suryawanshi, K. Prashanth, and U. Ramamurty: Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J. Alloys Compd.725, 355 (2017).

    Article  CAS  Google Scholar 

  48. Renishaw: Maraging Steel M300 Powder for Additive Manufacturing (2017); p. 1. http://resources.renishaw.com/en/download/data-sheet-maraging-steel-m300-for-400-w-powder-for-additive-manufacturing--96326.

  49. Y. Bai, Y. Yang, D. Wang, and M. Zhang: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A703, 116 (2017).

    Article  CAS  Google Scholar 

  50. J. Tian, Z. Huang, W. Qi, Y. Li, J. Liu, and G. Hu: Dependence of microstructure, relative density and hardness of 18Ni-300 maraging steel fabricated by selective laser melting on the energy density. In Advances in Materials Processing: Proceedings of Chinese Materials Conference 2017 (Springer, Singapore, 2018); p. 229.

  51. A.G. Demir and B. Previtali: Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int. J. Adv. Manuf. Technol.93, 2697 (2017).

    Article  Google Scholar 

  52. L. Roy:Variation in Mechanical Behavior due to Different Build Directions of Ti6Al4 V Fabricated by Electron Beam Additive Manufacturing Technology (University of Alabama Libraries, Tuscaloosa, AL, 2013).

  53. EOS GmbH: Material Data Sheet EOS M 290 – EOS Maraging Steel MS1 (2017); p. 1. https://cdn.eos.info/1deee2b550955632/b3615b80c80a/MS-MS1-M290_Material_data_sheet_10-17_en.pdf.

  54. E. ASTM: Standard Test Methods for Tension Testing of Metallic Materials. Annual Book of ASTM Standards. (ASTM, West Conshohocken, PA, 2001).

  55. A. Standard: E8. Standard Test Method for Tension Testing of Metallic Materials (ASTM, West Conshohocken, USA, 2004).

Download references

Acknowledgments

The work was supported by the Faculty Research Grant Award at Jacksonville State University. L.L. acknowledges the support by the NASA EPSCoR award NNX15AK29A with the sub-award No.: 2016-045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Wang, K., Wang, X. et al. Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height. Journal of Materials Research 35, 2065–2076 (2020). https://doi.org/10.1557/jmr.2020.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.126

Navigation