Skip to main content

Advertisement

Log in

Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Novel three-dimensional (3D) hierarchical macro- to nano-porous titanium (Ti) and TiMo alloys with sufficient compressive strength (CS) were prepared using NaCl spacer and dealloying methods. The dealloying process was implemented by the heat treatment of TiCu and TiMoCu master alloys in Mg powders. The 3D-hierarchical porous structures were composed of large pores having a mean size of 400 μm with interconnected micro-pores in the size of 10–30 μm, where the pore walls possessed numerous nano-pores with a size range of 10–50 nm. The CS and elastic modulus values were 72.4 MPa and 2.67 GPa as well as 92.62 MPa and 3.36 GPa for Ti and TiMo, respectively. The hierarchical porous structure is beneficial for the fast nucleation of bone-like apatite after immersion in simulated body fluid (SBF). In addition, TiMo samples after NaOH and heat treatments provide better apatite formation after soaking in SBF for a week, in comparison with the samples without treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. H. Nakajima: Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091 (2007).

    CAS  Google Scholar 

  2. Z.J. Wally, W. van Grunsven, F. Claeyssens, R. Goodall, and G.C. Reilly: Porous titanium for dental implant applications. Metals 5, 1902 (2015).

    Google Scholar 

  3. N.F. Gao and Y. Miyamoto: Joining of Ti3SiC2 with Ti-6Al-4V alloy. J. Mater. Res. 17, 52 (2002).

    CAS  Google Scholar 

  4. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, and T. Nakamura: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 (2005).

    CAS  Google Scholar 

  5. M. Borowski, A. Traverse, and J.P. Dallas: Structural characterization of Ti implanted AIN. J. Mater. Res. 10, 3136 (1995).

    CAS  Google Scholar 

  6. K. Wang: The use of titanium for medical applications in the USA. Mater. Sci. Eng. A 213, 134 (1996).

    Google Scholar 

  7. K.E. Tanner: Titanium in medicine. J. Eng. Med. 216, 215 (2002).

    Google Scholar 

  8. R. Van Noort: Titanium: The implant material of today. J. Mater. Sci. 22, 3801 (1987).

    Google Scholar 

  9. L.M.R. De Vasconcellos, D. De Oliveira Leite, F.O. Nascimento, L.G.O. De Vasconcellos, M.L. De Alencastro Graça, Y.R. Carvalho, and C.A.A. Cairo: Porous titanium for biomedical applications: An experimental study on rabbits. Med. Oral Pathol. Oral Cir. Bucal. 15, 407 (2010).

    Google Scholar 

  10. A. Yamamoto, R. Honma, and M. Sumita: Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39, 331 (1998).

    CAS  Google Scholar 

  11. Y. He, Y. Zhang, Y. Jiang, and R. Zhou: Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications. J. Mater. Res. 32, 2510 (2017).

    CAS  Google Scholar 

  12. E. Luong-Van, I. Rodriguez, H.Y. Low, N. Elmouelhi, B. Lowenhaupt, S. Natarajan, C.T. Lim, R. Prajapati, M. Vyakarnam, and K. Cooper: Review: Micro- and nanostructured surface engineering for biomedical applications. J. Mater. Res. 28, 165 (2013).

    CAS  Google Scholar 

  13. S. Radzi, G. Cowin, M. Robinson, J. Pratap, A. Volp, M.A. Schuetz, and B. Schmutz: Metal artifacts from titanium and steel screws in CT, 1.5 T and 3 T MR images of the tibial Pilon: A quantitative assessment in 3D. Quant. Imaging Med. Surg. 4, 163 (2014).

    Google Scholar 

  14. Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23, 491 (2002).

    CAS  Google Scholar 

  15. Y. Chen, B. Feng, Y. Zhu, J. Weng, J. Wang, and X. Lu: Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures. J. Mater. Sci. Mater. Med. 22, 839 (2011).

    CAS  Google Scholar 

  16. S. Arabnejad, B. Johnston, M. Tanzer, and D. Pasini: Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 35, 1774 (2017).

    CAS  Google Scholar 

  17. R.A. Ayers, S.J. Simske, T.A. Bateman, A. Petkus, R.L.C. Sachdeva, and V.E. Gyunter: Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. J. Biomed. Mater. Res. 45, 42 (1999).

    CAS  Google Scholar 

  18. S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen: Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24, 4691 (2003).

    CAS  Google Scholar 

  19. H.E. Götz, M. Müller, A. Emmel, U. Holzwarth, R.G. Erben, and R. Stangl: Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25, 4057 (2004).

    Google Scholar 

  20. Y.C.K. Chen-Wiegart, T. Wada, N. Butakov, X. Xiao, F. De Carlo, H. Kato, J. Wang, D.C. Dunand, and E. Maire: 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. J. Mater. Res. 28, 2444 (2013).

    CAS  Google Scholar 

  21. K. Schwarz and M. Epple: Hierarchically structured polyglycolide–a biomaterial mimicking natural bone. Macromol. Rapid Commun. 19, 613 (1998).

    CAS  Google Scholar 

  22. S. Thelen, F. Barthelat, and L.C. Brinson: Mechanics considerations for microporous titanium as an orthopedic implant material. J. Biomed. Mater. Res. A 69, 601 (2004).

    Google Scholar 

  23. T. Song, M. Yan, and M. Qian: The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review. Corros. Sci. 134, 78 (2018).

    CAS  Google Scholar 

  24. M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, and B.L. Su: Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479 (2016).

    CAS  Google Scholar 

  25. T. Wada, K. Yubuta, A. Inoue, and H. Kato: Dealloying by metallic melt. Mater. Lett. 65, 1076 (2011).

    CAS  Google Scholar 

  26. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, and Y. Ding: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007).

    CAS  Google Scholar 

  27. J. Liu, G. Jiang, Y. Liu, J. Di, Y. Wang, Z. Zhao, Q. Sun, C. Xu, J. Gao, A. Duan, J. Liu, Y. Wei, Y. Zhao, and L. Jiang: Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci. Rep. 4, 1 (2014).

    Google Scholar 

  28. X.Y. Yang, Y. Li, A. Lemaire, J.G. Yu, and B.L. Su: Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure Appl. Chem. 81, 2265 (2009).

    CAS  Google Scholar 

  29. F. Zhang, L. Wang, P. Li, S. Liu, P. Zhao, G. Dai, and S. He: Preparation of nano to submicro-porous TiMo foams by spark plasma sintering. Adv. Eng. Mater. 19, 1 (2017).

    Google Scholar 

  30. F. Zhang, P. Li, J. Yu, L. Wang, F. Saba, G. Dai, and S. He: Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders. J. Mater. Res. 32, 1528 (2017).

    CAS  Google Scholar 

  31. F. Zhang, E. Otterstein, and E. Burkel: Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams. Adv. Eng. Mater. 12, 863 (2010).

    CAS  Google Scholar 

  32. A. Takeuchi, and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    CAS  Google Scholar 

  33. B. Li and X. Lu: Influence of Ti powder characteristics on the mechanical properties of porous Ti using space holder technique. Acta Metall. Sin. 27, 338 (2014).

    CAS  Google Scholar 

  34. M. Hashimoto, S. Kitaoka, S. Muto, K. Tatsumi, and Y. Obata: The microstructure of scale formed by oxynitriding of Ti and exhibiting significant apatite-forming ability. J. Mater. Res. 31, 1004 (2016).

    CAS  Google Scholar 

  35. X. Fan, J. Chen, J.P. Zou, Q. Wan, Z.C. Zhou, and J.M. Ruan: Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans. Nonferrous Met. Soc. China 19, 347 (2009).

    CAS  Google Scholar 

  36. J. Liu, J. Ruan, L. Chang, H. Yang, and W. Ruan: Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater. Sci. Eng. C 78, 503 (2017).

    CAS  Google Scholar 

  37. X.J. Wang, Y.C. Li, J.G. Lin, P.D. Hodgson, and C.E. Wen: Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy. J. Mater. Res. 23, 1682 (2008).

    CAS  Google Scholar 

  38. R. Rohanizadeh, M. Al-Sadeq, and R.Z. LeGeros: Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. J. Biomed. Mater. Res. A 71, 343 (2004).

    CAS  Google Scholar 

  39. G. Faúndez, M. Troncoso, P. Navarrete, and G. Figueroa: Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 4, 1 (2004).

    Google Scholar 

  40. V.M. Villapún, L.G. Dover, A. Cross, and S. González: Antibacterial metallic touch surfaces. Materials 9, 1 (2016).

    Google Scholar 

  41. Y.N. Slavin, J. Asnis, U.O. Häfeli, and H. Bach: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1 (2017).

    Google Scholar 

  42. D.M. Rivera-Chacon, M. Alvarado-Velez, C.Y. Acevedo-Morantes, S.P. Singh, E. Gultepe, D. Nagesha, S. Sridhar, and J.E. Ramirez-Vick: Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J. Biomed. Nanotechnol. 9, 1092 (2013).

    CAS  Google Scholar 

  43. Y. Quan, F. Zhang, H. Rebl, B. Nebe, O. Keßler, and E. Burkel: Ti6Al4 V foams fabricated by spark plasma sintering with post-heat treatment. Mater. Sci. Eng. A 565, 118 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. U1737103), the Natural Science Foundation of Jiangsu Province (No. BK20161419), Scientific Research Foundation for the Returned Overseas Chinese Scholars at State Education Ministry (No. 2015-1098), and Jiangsu Key Laboratory for Advanced Metallic Materials (No. BM2007204) at Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, F., Garmroudi-Nezhad, E., Zhang, F. et al. Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys. Journal of Materials Research 35, 2597–2609 (2020). https://doi.org/10.1557/jmr.2020.123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.123

Navigation