Skip to main content

Advertisement

Log in

Porous Ti–5Mo–5Cu Alloy: Preparation, Microstructure and Mechanical Property

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

As a new biomedical bone tissue implant candidate, porous Ti5Mo5Cu alloy was developed by powder sintering from TiH2, Mo and Cu powders. Space holder material NH4HCO3 granules were added to regulate the pore characteristics like pore morphology and porosity and then mechanical properties including compressive strength and elastic modulus of the porous titanium alloy. The tailored elastic modulus (1.8–6.4 GPa) and compressive strength (93–152 MPa) of porous Ti5Mo5Cu alloys with porosity (49.6–61.8%) and average pore size (103–128 μm) fulfil the preliminary mechanical property and pore characteristics requirements of porous prosthesis. It is expected to be used for hard tissue prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaur M, and Singh K, Mater Sci Eng C 102 (2019) 844.

    Article  CAS  Google Scholar 

  2. Niinomi M, Nakai M, and Hieda J, Acta Biomater 8 (2012) 3888.

    Article  CAS  Google Scholar 

  3. Liu X, Chu PK, and Ding C. Mater Sci Eng R 47 (2004) 49.

    Article  Google Scholar 

  4. Takeuchi Y, Tanaka M, Tanaka J, Kamimoto A, Furuchi M, and Imai H, J Prosthod Res 64 (2020) 1.

    Article  Google Scholar 

  5. Djouina M, Esquerre N, Desreumaux P, Vignal C, and Body-Malapel M, Food Chem Toxicol 91 (2016) 108.

    Article  CAS  Google Scholar 

  6. Costa BC, Tokuhara CK, Rocha L A, Oliveira RC, Lisboa-Filho PN, and Pessoa JC, Mater Sci Eng C 96 (2019) 730.

    Article  CAS  Google Scholar 

  7. Li YH, Chen N, Cui HT, and Wang F, J Alloys Compd 723 (2017) 967.

    Article  CAS  Google Scholar 

  8. Oliveira CSS, Griza S, Oliveira MV, Ribeiro AA, and Leite MB, Powder Technol 281 (2015) 91.

    Article  Google Scholar 

  9. Wang X, Li Y, Xiong J, Hodgson PD, and Wen C, Acta Biomater 5 (2009) 3616.

    Article  CAS  Google Scholar 

  10. Xu JL, Tao SC, Bao LZ, Luo JM, and Zheng YF, Mater Sci Eng C 97 (2019):156.

    Article  CAS  Google Scholar 

  11. Yang D, Shao H, Guo Z, Liu X, and Ji Y, Biomed Mater 6 (2011) 045010.

    Article  Google Scholar 

  12. Okulov IV, Okulov AV, Volegov AS, and Markmann J, Scripta Mater 154 (2018) 68.

    Article  CAS  Google Scholar 

  13. Zhao L, Pei X, Jiang L, Hu C, Sun J, Xing F, Zhou C, Fan Y, and Zhang X, Compos Part B-Eng 162 (2019) 154.

    Article  CAS  Google Scholar 

  14. Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S. Petrzhik M, and Filonov M, Materi Sci Eng C 31 (2011) 643.

    Article  CAS  Google Scholar 

  15. Gao Z, Li Q, He F, Huang Y, and Wan Y, Mater Design 42 (2012) 13.

    Article  CAS  Google Scholar 

  16. Xie F, He X, Cao S, Mei M, and Qu X, Electrochimica Acta 105 (2013) 121.

    Article  CAS  Google Scholar 

  17. Bolat G, Izquierdo J, Gloriant T, Chelariu R, Mareci D, and Souto RM, Corro Sci 98 (2015) 170.

    Article  CAS  Google Scholar 

  18. Liu J, Ruan J, Chang L, Yang H, and Ruan W, Mater Sci Eng C 78 (2017) 503.

    Article  CAS  Google Scholar 

  19. Caparrós C, Guillem-Martí J, Molmeneu M, Punset M, Calero JA, and Gil FJ, J Mech Behav Biomed Mater 39 (2014) 79.

    Article  Google Scholar 

  20. Hench LL, and Ethripge EC, Biomaterial: An interfacial Approach. Academic Press, New York (1982), p 90.

    Google Scholar 

  21. Rajagopalan KV, Annu Rev Nutr 8 (1988) 401.

    Article  CAS  Google Scholar 

  22. Grass G, Rensing C, and Solioz M, Appl Environ Microbiol 77 (2011) 1541.

    Article  CAS  Google Scholar 

  23. Zhang E, Li S, Ren J, Zhang L, and Han Y, Mater Sci Eng C 69 (2016)760.

    Article  CAS  Google Scholar 

  24. Pypen CM, Dessein K, and Helsen JA, J Mater Sci Mater Med 9 (1998)761.

    Article  CAS  Google Scholar 

  25. Liu J, Zhang X, Wang H, Li F, Li M, Yang K, and Zhang E, Biomed Mater 9 (2014) 025013.

    Article  Google Scholar 

  26. Luo J, Guo S, Lu Y, Xu X, Zhao C, Wu S, and Lin J, Mater Charact 143 (2018) 127.

    Article  CAS  Google Scholar 

  27. Suchanek W, and Yoshimura M, J Mater Res 13 (1998) 94.

    Article  CAS  Google Scholar 

  28. Gibson LJ, and Ashby MF, Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997), p 183.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province in China. (Grant No. 2019–ZD–0257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Shang, XY. Porous Ti–5Mo–5Cu Alloy: Preparation, Microstructure and Mechanical Property. Trans Indian Inst Met 73, 2869–2873 (2020). https://doi.org/10.1007/s12666-020-02077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02077-6

Keywords

Navigation