Skip to main content

Advertisement

Log in

Bimetallic metal-organic frameworks-derived mesoporous CdxZn1−xS polyhedrons for enhanced photocatalytic hydrogen evolution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A bimetallic metal-organic frameworks (MOFs)-templated strategy was developed to fabricate mesoporous CdxZn1−xS polyhedrons with improved photocatalytic hydrogen evolution activity, and the formation mechanism of these mesoporous polyhedrons was discussed in detail. Incorporating Cd atoms, the Brunauer–Emmett–Teller surface areas of mesoporous CdxZn1−xS polyhedrons were significantly increased (271 m2/g), providing more exposed active sites compared with ZnS. In addition, suitable conduction band potential (< −0.55 eV) of the mesoporous CdxZn1−xS polyhedrons was also beneficial for the photocatalysis. Impressively, by the co-effects of mesoporous structure and modified conduction band, the mesoporous CdxZn1−xS polyhedrons exhibited better photocatalytic activity for hydrogen evolution than most reported photocatalysts without noble metals. The maximum hydrogen evolution rate of the CSZ3 reached 4.10 mmol/(h g) under visible-light irradiation and without any cocatalyst condition. This facile strategy for the construction of mesoporous CdxZn1−xS polyhedrons provided a deep insight to fabricate other metal sulfides for a variety of photochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. Y. Huang and B. Zhang: Active cocatalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew. Chem., Int. Ed. 56, 14804 (2017).

    Article  CAS  Google Scholar 

  2. X. Chen, S. Shen, L. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    Article  CAS  Google Scholar 

  3. X. Wang, D. Jing, and M. Ni: Solar photocatalytic energy conversion. Sci. Bull. 62, 597 (2017).

    Article  CAS  Google Scholar 

  4. R. Shi, Y. Cao, Y. Bao, Y. Zhao, G.I.N. Waterhouse, Z. Fang, L-Z. Wu, C-H. Tung, Y. Yin, and T. Zhang: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 29, 1700803 (2017).

    Article  CAS  Google Scholar 

  5. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  6. D.M. Schultz and T.P. Yoon: Solar synthesis: Prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  CAS  Google Scholar 

  7. Y. Song, J. Li, and C. Wang: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).

    Article  CAS  Google Scholar 

  8. C. Han, Z. Chen, N. Zhang, J.C. Colmenares, and Y-J. Xu: Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 25, 221 (2015).

    Article  CAS  Google Scholar 

  9. C. Zhou, R. Shi, L. Shang, Y. Zhao, G.I.N. Waterhouse, L-Z. Wu, C-H. Tung, and T. Zhang: A sustainable strategy for the synthesis of pyrochlore H4Nb2O7 hollow microspheres as photocatalysts for overall water splitting. ChemPlusChem 82, 181 (2017).

    Article  CAS  Google Scholar 

  10. C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, and Z. Kang: Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal., B 216, 114 (2017).

    Article  CAS  Google Scholar 

  11. Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, and J. Yu: CdS/Graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015).

    Article  CAS  Google Scholar 

  12. L. Shang, B. Tong, H. Yu, G.I.N. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L-Z. Wu, C-H. Tung, and T. Zhang: CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1501241 (2016).

    Article  CAS  Google Scholar 

  13. S. Liu, J. Chen, D. Xu, X. Zhang, and M. Shen: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. J. Mater. Res. 33, 1391 (2018).

    Article  CAS  Google Scholar 

  14. D.A. Giannakoudakis, N.A. Travlou, J. Secor, and T.J. Bandosz: Oxidized g-C3N4 nanospheres as catalytically photoactive linkers in MOF/g-C3N4 composite of hierarchical pore structure. Small 13, 1601758 (2017).

    Article  CAS  Google Scholar 

  15. C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, and K. Domen: A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem., Int. Ed. 54, 2955 (2015).

    Article  CAS  Google Scholar 

  16. S. Chen, T. Takata, and K. Domen: Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  17. S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, and Y. Liu: MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751 (2018).

    Article  CAS  Google Scholar 

  18. Q. Li and T. Lian: Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures. Nano Res. 11, 3031 (2018).

    Article  CAS  Google Scholar 

  19. C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K.M. Ryan: Compound copper chalcogenide nanocrystals. Chem. Rev. 117, 5865 (2017).

    Article  CAS  Google Scholar 

  20. H. Zhao, X. Ding, B. Zhang, Y. Li, and C. Wang: Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1−xS/Au/g-C3N4 photocatalysts under visible light. Sci. Bull. 62, 602 (2017).

    Article  CAS  Google Scholar 

  21. A.P. Gaikwad, D. Tyagi, C.A. Betty, and R. Sasikala: Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Appl. Catal., A 517, 91 (2016).

    Article  CAS  Google Scholar 

  22. R. Sasikala, A.R. Shirole, V. Sudarsan, G. Jagannath, C. Sudakar, R. Naik, R. Rao, and S.R. Bharadwaj: Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Appl. Catal., A 377, 47 (2010).

    Article  CAS  Google Scholar 

  23. B. Gong, Y. Lu, P. Wu, Z. Huang, Y. Zhu, Z. Dang, N. Zhu, G. Lu, and J. Huang: Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes. Appl. Surf. Sci. 365, 280 (2016).

    Article  CAS  Google Scholar 

  24. F. Kyne, S. Maguire, S. Obroin, P. Mcging, S. Mccann, and E. Wright: Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem. Commun. 182, 620 (2000).

    Google Scholar 

  25. Z. Fang, L. Liu, J. Wang, and X. Zhong: Depositing a ZnxCd1−xS shell around CdSe core nanocrystals via a noninjection approach in aqueous media. J. Phys. Chem. C 113, 4301 (2009).

    Article  CAS  Google Scholar 

  26. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175 (2011).

    Article  CAS  Google Scholar 

  27. D.C. Jiang, Z. Sun, H. Jia, D. Lu, and P. Du: Cocatalyst-free CdS nanorods/ZnS nanoparticles composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 4, 675 (2015).

    Article  CAS  Google Scholar 

  28. D. Shu, H. Wang, Y. Wang, Y. Li, X. Liu, X. Chen, X. Peng, X. Wang, P. Ruterana, and H. Wang: Composition dependent activity of Fe1−xPtx decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 42, 20888 (2017).

    Article  CAS  Google Scholar 

  29. I. Levchuk, C. Würth, F. Krause, A. Osvet, M. Batentschuk, U. Resch-Genger, C. Kolbeck, P. Herre, H.P. Steinrück, W. Peukert, and C.J. Brabec: Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 9, 1083 (2016).

    Article  CAS  Google Scholar 

  30. C. An, J. Feng, J. Liu, G. Wei, J. Du, H. Wang, S. Jin, and J. Zhang: NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1−xS nanorods. Inorg. Chem. Front. 4, 1042 (2017).

    Article  CAS  Google Scholar 

  31. Z. Han, G. Chen, C. Li, Y. Yu, and Y. Zhou: Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity. J. Mater. Chem. A 3, 1696 (2014).

    Article  CAS  Google Scholar 

  32. Z. Mei, M. Zhang, J. Schneider, W. Wang, N. Zhang, Y. Su, B. Chen, S. Wang, A.L. Rogach, and F. Pan: Hexagonal Zn1−xCdxS (0.2 ≤ x ≤ 1) solid solution photocatalysts for H2 generation from water. Catal. Sci. Technol. 7, 982 (2017).

    Article  CAS  Google Scholar 

  33. Y. Su, Z. Zhang, H. Liu, and Y. Wang: Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal., B 200, 448 (2017).

    Article  CAS  Google Scholar 

  34. C. Xing, Y. Zhang, W. Yan, and L. Guo: Band structure-controlled solid solution of Cd1−xCd1−xZnxSZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31, 2018 (2006).

    Article  CAS  Google Scholar 

  35. J. Chen, J. Chen, and Y. Li: Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J. Mater. Chem. A 5, 24116 (2017).

    Article  CAS  Google Scholar 

  36. Q.L. Zhu and Q. Xu: Metal–organic framework composites. Chem. Soc. Rev. 43, 5468 (2014).

    Article  CAS  Google Scholar 

  37. P. Tian, X. He, W. Li, L. Zhao, W. Fang, H. Chen, F. Zhang, W. Zhang, and W. Wang: Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J. Mater. Sci. 53, 12016 (2018).

    Article  CAS  Google Scholar 

  38. J. Liu, J. Zheng, D. Barpaga, S. Sabale, B. Arey, M.A. Derewinski, B.P. McGrail, and R.K. Motkuri: A tunable bimetallic MOF-74 for adsorption chiller applications. Eur. J. Inorg. Chem. 2018, 885 (2018).

    Article  CAS  Google Scholar 

  39. G. Fang, J. Zhou, Y. Cai, S. Liu, X. Tan, A. Pan, and S. Liang: Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J. Mater. Chem. A 5, 13983 (2017).

    Article  CAS  Google Scholar 

  40. Z. Yu, Y. Bai, Y. Liu, S. Zhang, D. Chen, N. Zhang, and K. Sun: Metal–organic-framework-derived yolk–shell-structured cobalt-based bimetallic oxide polyhedron with high activity for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 9, 31777 (2017).

    Article  CAS  Google Scholar 

  41. P. Zhang, B.Y. Guan, L. Yu, and X.W.D. Lou: Formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem., Int. Ed. 56, 7141 (2017).

    Article  CAS  Google Scholar 

  42. Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang, L. Pan, L. Wang, X. Zhang, and J.J. Zou: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359 (2016).

    Article  CAS  Google Scholar 

  43. J. Qian, T.T. Li, Y. Hu, and S. Huang: A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chem. Commun. 53, 13027 (2017).

    Article  CAS  Google Scholar 

  44. M. Huang, K. Mi, J. Zhang, H. Yu, T. Yu, A. Yuan, Q. Kong, and S. Xiong: MOFs-derived Bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266 (2017).

    Article  CAS  Google Scholar 

  45. F.Z. Song, Q.L. Zhu, X. Yang, W.W. Zhan, P. Pachfule, N. Tsumori, and Q. Xu: Metal–organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 8, 1701416 (2017).

    Article  CAS  Google Scholar 

  46. J. Liu, R. Li, Y. Wang, Y. Wang, X. Zhang, and C. Fan: The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: Generation of superoxide radical and adsorption. J. Alloys Compd. 693, 543 (2017).

    Article  CAS  Google Scholar 

  47. C. Yan, Y.Z. Fan, L. Chen, M. Pan, L.Y. Zhang, J.J. Jiang, and C.Y. Su: Time controlled structural/packing transformation and tunable luminescence of Cd(II)-chloride-triBZ-ntb coordination assemblies: An experimental and theoretical exploration. CrystEngComm 17, 546 (2014).

    Article  CAS  Google Scholar 

  48. L. Han, X.Y. Yu, and X.W. Lou: formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 28, 4601 (2016).

    Article  CAS  Google Scholar 

  49. C. Avci, J. Arinez-Soriano, A. Carne-Sanchez, V. Guillerm, C. Carbonell, I. Imaz, and D. Maspoch: Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem., Int. Ed. 54, 14417 (2015).

    Article  CAS  Google Scholar 

  50. A. Indra, T. Song, and U. Paik: Metal organic framework derived materials: Progress and prospects for the energy conversion and storage. Adv. Mater. 30, 1705146 (2018).

    Article  CAS  Google Scholar 

  51. X.Y. Yu, L. Yu, H.B. Wu, and X.W. Lou: Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 54, 5331 (2015).

    Article  CAS  Google Scholar 

  52. L. Yu, L. Zhang, H.B. Wu, and X.W. Lou: Formation of NixCo3−xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 53, 3711 (2014).

    Article  CAS  Google Scholar 

  53. Y. Su, D. Ao, H. Liu, and Y. Wang: MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5, 8680 (2017).

    Article  CAS  Google Scholar 

  54. J. Zhang, J. Yu, M. Jaroniec, and J.R. Gong: Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12, 4584 (2012).

    Article  CAS  Google Scholar 

  55. C. Fan, X. Wang, H. Sang, and F. Wang: Effects of composition and calcination temperature on photocatalytic evolution over from glycerol and water mixture. Int. J. Photoenergy 2012, 1 (2012).

    Google Scholar 

  56. D. Jiang, Z. Sun, H. Jia, D. Lu, and P. Du: A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 4, 675 (2016).

    Article  CAS  Google Scholar 

  57. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong: Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 3, 882 (2013).

    Article  CAS  Google Scholar 

  58. H. Wang, Y. Li, D. Shu, X. Chen, X. Liu, X. Wang, J. Zhang, and H. Wang: CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 40, 1280 (2016).

    Article  CAS  Google Scholar 

  59. D. Dai, H. Xu, L. Ge, C. Han, Y. Gao, S. Li, and Y. Lu: In situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Appl. Catal., B 217, 429 (2017).

    Article  CAS  Google Scholar 

  60. X. Guo, C. Chen, W. Song, X. Wang, W. Di, and W. Qin: CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Mol. Catal. A: Chem. 387, 1 (2014).

    Article  CAS  Google Scholar 

  61. S. Pany and K.M. Parida: A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. Phys. Chem. Chem. Phys. 17, 8070 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21476108, 21276125, 21776129, and 21706121), Natural Science Foundation of Jiangsu Province (No. BK20170995), General Program for University Natural Science Research of Jiangsu Province (No. 16KJB530003) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Kong.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, F., Zhou, S., Wang, Y. et al. Bimetallic metal-organic frameworks-derived mesoporous CdxZn1−xS polyhedrons for enhanced photocatalytic hydrogen evolution. Journal of Materials Research 34, 1773–1784 (2019). https://doi.org/10.1557/jmr.2019.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.72

Navigation