Skip to main content
Log in

Microstructural evolution and wear performance of the high-entropy FeMnCoCr alloy/TiC/CaF2 self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The FeMnCoCr high-entropy alloy/TiC/CaF2 self-lubricating coatings were successfully prepared on a Cu–Zr–Cr alloy for continuous casting mold by laser cladding for wear-resistance. The intriguing finding was that the laser-cladded FeMnCoCr is mainly composed of face-centered cubic and hexagonal close-packed solid solution phases. During the cladding process, the FeMnCoCr/TiC or the FeMnCoCr/TiC/CaF2 mixed sufficiently with Cu matrix, while FeMnCoCr exhibited a spherical shape owing to being insoluble in Cu. The average hardness of the FeMnCoCr/TiC/CaF2 self-lubricating high-entropy alloy (HEA) coatings was twice that of the pure FeMnCoCr HEA coating. By addition of TiC, the friction coefficient and wear rate were decreased from 0.35 and 3.68 × 10−15 mm3/m to 0.27 and 3.06 × 10−15 mm3/m, respectively. When CaF2 was added, the friction coefficients and wear rate were decreased to 0.16 and 2.16 × 10−15 mm3/m, respectively, which was 54% lower than the pure FeMnCoCr HEA coating. The main wear mechanism of the FeMnCoCr coating is abrasive wear while that of the FeMnCoCr/TiC coating is abrasive and adhesion wear. But adhesion wear is dominant for the FeMnCoCr/TiC/CaF2 coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong: Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate. Surf. Coat. Technol. 315, 368 (2017).

    Article  CAS  Google Scholar 

  2. P.K. Wong, C.T. Kwok, H.C. Man, and F.T. Cheng: Corrosion behavior of laser-alloyed copper with titanium fabricated by high power diode laser. Corros. Sci. 57, 228 (2012).

    Article  CAS  Google Scholar 

  3. Q. Wang, L. Ren, X. Li, S. Zhang, T.B. Sercombe, and K. Yang: Antimicrobial Cu-bearing stainless steel scaffolds. Mater. Sci. Eng., C 68, 519 (2016).

    Article  CAS  Google Scholar 

  4. J.M. Guilemany, J. Nutting, V.V. Sobolev, Z. Dong, J.M. De Pace, J.A. Calero, and J. Fernandez: Interface structures of high velocity oxy-fuel sprayed WC-Co coating on a copper substrate. Mater. Sci. Eng. 232, 119 (1997).

    Article  Google Scholar 

  5. W. Hsu, H. Murakami, J. Yeh, A. Yeh, and K. Shimoda: On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol. 316, 71 (2017).

    Article  CAS  Google Scholar 

  6. H. Yan, P. Zhang, Z. Yu, Q. Lu, S. Yang, and C. Li: Microstructure and tribological properties of laser-clad Ni–Cr/TiB2 composite coatings on copper with the addition of CaF2. Surf. Coat. Technol. 206, 4046 (2012).

    Article  CAS  Google Scholar 

  7. O.B. Kovalev, D.V. Bedenko, and A.V. Zaitsev: Development and application of laser cladding modeling technique: From coaxial powder feeding to surface deposition and bead formation. Appl. Math. Model. 57, 339 (2018).

    Article  Google Scholar 

  8. U. De Oliveira, V. Ocelík, and J.T.M. De Hosson: Micro-stresses and microstructure in thick cobalt-based laser deposited coatings. Surf. Coat. Technol. 201, 6363 (2007).

    Article  Google Scholar 

  9. W. Wu, L. Jiang, H. Jiang, X. Pan, Z. Cao, D. Deng, T. Wang, and T. Li: Phase evolution and properties of Al2CrFeNiMox high-entropy alloys coatings by laser cladding. J. Therm. Spray Technol. 24, 1333 (2015).

    Article  CAS  Google Scholar 

  10. J. Dutta, S. Katharina, K. Wissenbach, D. Höche, C. Blawert, and A. Weisheit: Direct laser cladding of the silicide dispersed titanium aluminide. Opt. Laser Technol. 106, 182 (2018).

    Article  Google Scholar 

  11. G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. 509, 98 (2009).

    Article  Google Scholar 

  12. D.B. Miraclea and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  13. D.C.I. Lee and Z. Lu: Nano-mechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).

    Article  CAS  Google Scholar 

  14. R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, and K. Zhou: Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Process ability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125 (2018).

    Article  CAS  Google Scholar 

  15. X.W. Qiu, Y.P. Zhang, L. He, and C.G. Liu: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 549, 195 (2013).

    Article  CAS  Google Scholar 

  16. Y. Zhang, J. Zhang, Q. Yan, L. Zhang, M. Wang, B. Song, and Y. Shi: Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance. Scr. Mater. 148, 20 (2018).

    Article  CAS  Google Scholar 

  17. J.M. Wu, S.J. Lin, J.W. Ye, S.K. Chen, Y.S. Huang, and H.C. Chen: Adhesive wear behavior of AlCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006).

    Article  CAS  Google Scholar 

  18. C. Huang, Y.Z. Zhang, J.Y. Shen, and R. Vilar: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6A1–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).

    Article  CAS  Google Scholar 

  19. P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, and L. Huang: Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 104, 24 (2019).

    Article  CAS  Google Scholar 

  20. M. Chen, X. Shi, and H. Yang: Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310 (2018).

    Article  CAS  Google Scholar 

  21. W. Li, G. Wang, and S. Wu: Creep, fatigue, and fracture behavior of high-entropy alloys. J. Mater. Res. 33, 3011 (2018).

    Article  CAS  Google Scholar 

  22. L. Weber and R. Tavangar: On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr. Mater. 57, 988 (2007).

    Article  CAS  Google Scholar 

  23. S. Xia, M.C. Gao, T. Yang, P.K. Liaw, and Y. Zhang: Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 480, 100 (2016).

    Article  CAS  Google Scholar 

  24. Z. Fan, H. Wang, and Y. Wu: Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 6, 52164 (2016).

    Article  CAS  Google Scholar 

  25. H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, and Z. Xie: Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe–Ti–C element system. Powder Technol. 246, 456 (2013).

    Article  CAS  Google Scholar 

  26. W.G. Liu, X.B. Liu, Z.G. Zhang, and J. Guo: Development and characterization of composite Ni–Cr–C–CaF2 laser cladding on γ-TiAl intermetallic alloy. J. Alloys Compd. 470, 25 (2009).

    Article  Google Scholar 

  27. Z.F. Xiang, X.B. Liu, J. Ren, J. Luo, S.H. Shi, Y. Chen, G.L. Shi, and S.H. Wu: Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2. Appl. Surf. Sci. 313, 243 (2014).

    Article  CAS  Google Scholar 

  28. H. Yan, J. Zhang, P. Zhang, Z. Yu, C. Li, P. Xu, and Y. Lu: Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold. Surf. Coat. Technol. 232, 362 (2013).

    Article  CAS  Google Scholar 

  29. J. Yuan, Y. Zhu, H. Ji, X. Zheng, Q. Ruan, Y. Niu, Z. Liu, and Y. Zeng: Microstructures and tribological properties of plasma sprayed WC–Co–Cu–BaF2/CaF2 self-lubricating wear resistant coatings. Appl. Surf. Sci. 256, 4938 (2010).

    Article  CAS  Google Scholar 

  30. X. Xu, G. Mi, L. Xiong, P. Jiang, X. Shao, and C. Wang: Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire. J. Alloys Compd. 740, 16–27 (2018).

    Article  CAS  Google Scholar 

  31. Z. Li and C. Tasan: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).

    Article  CAS  Google Scholar 

  32. C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, and Y. Wang: CoCrFeNi(W1−XMoX) high entropy alloy coatings with excellent mechanical properties and corrosion resistant prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193 (2017).

    Article  CAS  Google Scholar 

  33. A. Salminen and A. Fellman: The effect of laser and welding parameters on keyhole and melt pool behavior during fiber laser welding. Laser Inst. Am. 703, 354 (2007).

    Google Scholar 

  34. D. Dai and D. Gu: Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl. Surf. Sci. 355, 310 (2015).

    Article  CAS  Google Scholar 

  35. Q. Tang, S. Pang, B. Chen, H. Suo, and J. Zhou: A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti–6Al–4V alloy. Int. J. Heat Mass Transfer 78, 203 (2014).

    Article  CAS  Google Scholar 

  36. X. Chen, S. Pang, and X. Shao: Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel. Optic Laser. Eng. 91, 196 (2017).

    Article  Google Scholar 

  37. A. Yakovlev, P. Bertrand, and I. Smurov: Laser cladding of wear resistant metal matrix composite coatings. Thin Solid Films 454, 133 (2004).

    Article  Google Scholar 

  38. B. Song, Z. Wang, Q. Yan, Y. Zhang, J. Zhang, C. Cai, Q. Wei, and Y. Shi: Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in situ nano/submicro-sized carbides reinforced iron matrix composites. Mater. Sci. Eng., A 707, 478 (2017).

    Article  CAS  Google Scholar 

  39. H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, and J. Eckert: Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater. Lett. 142, 38 (2015).

    Article  CAS  Google Scholar 

  40. C. Huang, Y. Zhang, R. Vilar, and J. Shen: Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater. Des. 41, 338 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the financial support of National Natural Science Foundation of China (51505166), Science and Technology Bureau of Changsha (kq1801068), and Science and Technology Project of Hunan Province (2016JC2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Li, R., Yuan, T. et al. Microstructural evolution and wear performance of the high-entropy FeMnCoCr alloy/TiC/CaF2 self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold. Journal of Materials Research 34, 1714–1725 (2019). https://doi.org/10.1557/jmr.2019.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.57

Navigation