Skip to main content
Log in

The advantage of alcohol–calcium method on the formation and the stability of vaterite against ethanol–water binary solvent method

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The advantage of alcohol–calcium method on the formation and the stability of vaterite against ethanol–water binary solvents (EWBS) method was studied through comparative experiment. The polymorphs and morphologies of CaCO3 were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that vaterite slowly decreases from 90.4 to 82.5% as increasing aging time from 0 to 1320 min in alcohol–calcium system, while quickly decreases from 46.5% to 0% at the same aging time in EWBS system. The similar variation as reaction temperature was found in both systems. SEM images indicate that calcite presents its typical rhombohedral morphology in both systems, while the morphologies of vaterite particles in two systems are different. In alcohol–calcium system, small vaterite nanoparticles aggregate into spherical microparticles, and these microparticles become porous, loose, and irregular, even incomplete, as increasing aging time and reaction temperature, while in EWBS system, vaterite nanoparticles aggregate into irregular microparticles. The advantage of alcohol–calcium method was discussed from the formation of the complex compound CaCl2·n(C2H5OH) in alcohol and its decomplexation in aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Sato and S. Matsuda: Structure of vaterite and infrared spectra. Z. Kristallogr. 129, 405–410 (1969).

    Article  CAS  Google Scholar 

  2. H. Wei, Q. Shen, Y. Zhao, D.J. Wang, and D.F. Xu: Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite. J. Cryst. Growth 250, 516–524 (2003).

    Article  CAS  Google Scholar 

  3. D.B. Trushina, T.V. Bukreeva, M.V. Kovalchuk, and M.N. Antipina: CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C 45, 644–658 (2014).

    Article  CAS  Google Scholar 

  4. Z.G. Cui, C.F. Cui, Y. Zhu, and B.P. Binks: Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids. Langmuir 28, 314–320 (2011).

    Article  Google Scholar 

  5. J. Nakamura, G. Poologasundarampillai, J.R. Jones, and T. Kasuga: Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. J. Mater. Chem. B 1, 4446–4454 (2013).

    Article  CAS  Google Scholar 

  6. N. Qiu, H. Yin, B. Ji, N. Klauke, A. Glidle, Y. Zhang, H. Song, L. Cai, L. Ma, G. Wang, L. Chen, and W. Wang: Calcium carbonate microspheres as carriers for the anticancer drug camptothecin. Mater. Sci. Eng. C 32, 2634–2640 (2012).

    Article  CAS  Google Scholar 

  7. L.F. Yang, D.Q. Chu, H.L. Sun, and G. Ge: Room temperature synthesis of flower-like CaCO3 architectures. New J. Chem. 40, 571–577 (2016).

    Article  CAS  Google Scholar 

  8. F. Sha, N. Zhu, Y.J. Bai, Q. Li, B. Guo, T.X. Zhao, F. Zhang, and J.B. Zhang: Controllable synthesis of various CaCO3 morphologies based on a CCUS idea. ACS Sustainable Chem. Eng. 4, 3032–3044 (2016).

    Article  CAS  Google Scholar 

  9. J. Sargheini, A. Ataie, S.M. Salili, and A.A. Hoseinion: One-step facile synthesis of CaCO3 nanoparticles via mechano-chemical route. Powder Technol. 219, 72–77 (2012).

    Article  CAS  Google Scholar 

  10. C.P. Hu, C.J. Chen, Y. Wu, J. Li, Y.C. Hu, L.G. Wei, and J.X. Jiang: The mechanochemical route of vaterite synthesis using sodium hexametaphosphate as an inorganic additive. J. Am. Ceram. Soc. 102, 7116–7124 (2019).

    Article  CAS  Google Scholar 

  11. J.X. Jiang, J.Z. Ye, G.W. Zhang, X.H. Gong, L.H. Nie, and J.N. Liu: Polymorph and morphology control of CaCO3 via temperature and PEG during the decomposition of Ca(HCO3)2. J. Am. Ceram. Soc. 95, 3735–3738 (2012).

    Article  CAS  Google Scholar 

  12. J.X. Jiang, Y. Zhang, D.D. Xu, and J.N. Liu: Can agitation determine the polymorphs of calcium carbonate during the decomposition of calcium bicarbonate? CrystEngComm 16, 5221–5226 (2014).

    Article  CAS  Google Scholar 

  13. J.X. Jiang, C.J. Chen, B.W. Xiao, Z.L. Bai, C.H. Jiang, C.C. Yang, Y. Wu, and X.L. Wang: Hierarchical CaCO3 particles self-assembled from metastable vaterite and stable calcite during the decomposition of Ca(HCO3)2. CrystEngComm 19, 7332–7338 (2017).

    Article  CAS  Google Scholar 

  14. Q. Li, Y. Ding, F.Q. Li, B. Xie, and Y.T. Qian: Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin. J. Cryst. Growth 236, 357–362 (2002).

    Article  CAS  Google Scholar 

  15. J.Z. Jiang, Y.X. Ma, T. Zhang, Z.Y. Liang, and Z.G. Cui: Morphology and size control of calcium carbonate crystallized in a reverse micelle system with switchable surfactants. RSC Adv. 5, 80216–80219 (2015).

    Article  CAS  Google Scholar 

  16. Y.M. Guo, F.F. Wang, J. Zhang, L. Yang, X.M. Shi, Q.L. Fang, and X.M. Ma: Biomimetic synthesis of calcium carbonate with different morphologies under the direction of different amino acids. Res. Chem. Intermed. 39, 2407–2415 (2013).

    Article  CAS  Google Scholar 

  17. L. Liu, J. Jiang, and S.H. Yu: Polymorph selection and structure evolution of CaCO3 mesocrystals under control of poly(sodium 4-styrenesulfonate): Synergetic effect of temperature and mixed solvent. Cryst. Growth Des. 14, 6048–6056 (2014).

    Article  CAS  Google Scholar 

  18. B. Yang and Z. Nan: Abnormal polymorph conversion of calcium carbonate from calcite to vaterite. Mater. Res. Bull. 47, 521–526 (2012).

    Article  CAS  Google Scholar 

  19. T. Beuvier, B. Calvignac, G.J.R. Delcroix, M.K. Tran, S. Kodjikian, N. Delorme, J.F. Bardeau, A. Gibaud, and F. Boury: Synthesis of hollow vaterite CaCO3 microspheres in supercritical carbon dioxide medium. J. Mater. Chem. 21, 9757–9761 (2011).

    Article  CAS  Google Scholar 

  20. L. Zhang, L.H. Yue, F. Wang, and Q. Wang: Divisive effect of alcohol–water mixed solvents on growth morphology of calcium carbonate crystals. J. Phys. Chem. B 112, 10668–10674 (2008).

    Article  CAS  Google Scholar 

  21. Y. Hu, Y. Zhou, X. Xu, and R. Tang: Phase-controlled crystallization of amorphous calcium carbonate in ethanol–water binary solvents. Cryst. Res. Technol. 50, 312–318 (2015).

    Article  CAS  Google Scholar 

  22. A.X. Wang, D.Q. Chu, L.M. Wang, B.G. Mao, H.M. Sun, Z.C. Ma, G. Wang, and L.X. Wang: Preparation and characterization of novel spica-like hierarchical vaterite calcium carbonate and a hydrophilic poly(vinylidene fluoride)/calcium carbonate composite membrane. CrystEngComm 16, 5198–5205 (2014).

    Article  CAS  Google Scholar 

  23. B.G. Mao, D.Q. Chu, A.X. Wang, L.M. Wang, H.M. Sun, Z.Y. Zhang, and X.Z. Yang: Fabrication of flowerlike vaterite calcium carbonate crystal aggregates by self-assembly in water/ethanol mixtures. Eur. J. Inorg. Chem. 35, 5958–5963 (2013).

    Article  Google Scholar 

  24. N. Koga, Y. Yamane, and T. Kimura: Thermally induced transformations of calcium carbonate polymorphs precipitated selectively in ethanol/water solutions. Thermochim. Acta 512, 13–21 (2011).

    Article  CAS  Google Scholar 

  25. K.K. Sand, J.D. Rodriguez-Blanco, E. Makovicky, L.G. Benning, and S.L.S. Stipp: Crystallization of CaCO3 in water-alcohol mixtures: Spherulitic growth, polymorph stabilization, and morphology change. Cryst. Growth Des. 12, 842–853 (2011).

    Article  Google Scholar 

  26. D. Jin, F. Wang, and L. Yue: Phase and morphology evolution of vaterite crystals in water/ethanol binary solvent. Cryst. Res. Technol. 46, 140–144 (2011).

    Article  CAS  Google Scholar 

  27. S.F. Chen, S.H. Yu, J. Jiang, F.Q. Li, and Y.K. Liu: Polymorph discrimination of CaCO3 mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chem. Mater. 18, 115–122 (2006).

    Article  CAS  Google Scholar 

  28. X. Geng, L. Liu, J. Jiang, and S.H. Yu: Crystallization of CaCO3 mesocrystals and complex aggregates in a mixed solvent media using polystyrene sulfonate as a crystal growth modifier. Cryst. Growth Des. 10, 3448–3453 (2010).

    Article  CAS  Google Scholar 

  29. E. Hawlicka and D. Swiatla-Wojcik: MD simulation studies of selective solvation in methanol–water mixtures: An effect of the charge density of a solute. J. Phys. Chem. A 106, 1336–1345 (2002).

    Article  CAS  Google Scholar 

  30. G. Falini, S. Albeck, S. Weiner, and L. Addadi: Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).

    Article  Google Scholar 

  31. J.R. Clarkson, T.J. Price, and C.J. Adams: Role of metastable phases in the spontaneous precipitation of calcium carbonate. J. Chem. Soc., Faraday Trans. 88, 243–249 (1992).

    Article  CAS  Google Scholar 

  32. E.M. Flaten, M. Seiersten, and J.P. Andreassen: Polymorphism and morphology of calcium carbonate precipitated in mixed solvents of ethylene glycol and water. J. Cryst. Growth 311, 3533–3538 (2009).

    Article  CAS  Google Scholar 

  33. J. Chen and L. Xiang: Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technol. 189, 64–69 (2009).

    Article  CAS  Google Scholar 

  34. J. Jiang, S.F. Chen, L. Liu, H.B. Yao, Y.H. Qiu, M.R. Gao, and S.H. Yu: Template-free polymorph discrimination and synthesis of calcium carbonate minerals. Chem. Commun. 39, 5853–5855 (2009).

    Article  Google Scholar 

  35. A.J. Xie, Y.H. Shen, C.Y. Zhang, Z.W. Yuan, X.M. Zhu, and Y.M. Yang: Crystal growth of calcium carbonate with various morphologies in different amino acid systems. J. Cryst. Growth 285, 436–443 (2005).

    Article  CAS  Google Scholar 

  36. Y.S. Han, G. Hadiko, M. Fuji, and M. Takahashi: Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method. J. Eur. Ceram. Soc. 26, 843–847 (2006).

    Article  CAS  Google Scholar 

  37. C.G. Kontoyannis and N.V. Vagenas: Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125, 251–255 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Open Foundation of Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei Provincial Key Laboratory of Green Materials for Light Industry (201907A07), and Training Program of Innovation and Entrepreneurship for Undergraduates (S201910500029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuxin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Hu, C., Chen, C. et al. The advantage of alcohol–calcium method on the formation and the stability of vaterite against ethanol–water binary solvent method. Journal of Materials Research 35, 289–298 (2020). https://doi.org/10.1557/jmr.2019.412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.412

Navigation