Skip to main content
Log in

Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites

  • Article
  • Functional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There is no agreement regarding which solvent is more suitable to obtain sol–gel–derived titania (TiO2) samples with an enhanced photocatalytic behavior. Furthermore, the solvent effect on the preparation of TiO2-RGO (reduced graphene oxide) nanocomposites has not been published yet and could be an attractive experimental strategy to modulate structure and properties. On the basis of these observations, TiO2-RGO nanocomposites were fabricated in this study. It was evaluated for the influence of using either isopropyl (IsoprOH) or ethyl (EtOH) alcohol on the textural and photocatalytic properties of the prepared materials. The use of IsoprOH led to samples with smaller crystallite size, narrower apparent band gap, smaller isoelectric point, larger adsorption capacity, and higher photocatalytic activity. In addition, the incorporation of RGO into TiO2 greatly improved the adsorption capacity and photocatalytic activity of the latter. However, the optimal loading of RGO to prepare composites with enhanced photocatalytic activities was 1 wt%. This finding can be related to the stacking of RGO sheets when concentrations above 1 wt% are used, which could prevent UV light to reach the TiO2 particles and also decrease the photocatalytic capacity of the composites. Moreover, materials with RGO concentration above 1 wt% could exhibit a highly negatively charged surface, which may decrease the separation of the generated electron–hole pairs and lead to faster recombination rates of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. C. Li, Z. Zhao, H. Shindume Lomboleni, H. Huang, and Z. Peng: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).

    Article  CAS  Google Scholar 

  2. Y. Liu, D. Su, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, and S. Zhang: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).

    Article  CAS  Google Scholar 

  3. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).

    Article  CAS  Google Scholar 

  4. F. Li, T. Han, H. Wang, X. Zheng, J. Wan, and B. Ni: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  5. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  6. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  7. J. Wang, B. Liu, and K. Nakata: Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO crystals. Chin. J. Catal. 40, 403 (2019).

    Article  CAS  Google Scholar 

  8. J. Wu, S. Lo, K. Song, B.K. Vijayan, W. Li, K.A. Gray, and V.P. Dravid: Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. J. Mater. Res. 26, 1646 (2011).

    Article  CAS  Google Scholar 

  9. L. Liu, H. Zhao, J.M. Andino, and Y. Li: Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817 (2012).

    Article  CAS  Google Scholar 

  10. M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, and C. Wöll: Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106, 138302 (2011).

    Article  CAS  Google Scholar 

  11. D.A.H. Hanaor and C.C. Sorrell: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).

    Article  CAS  Google Scholar 

  12. J. Zhang, P. Zhou, J. Liu, and J. Yu: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382 (2014).

    Article  CAS  Google Scholar 

  13. L. Ji, W. Qiao, K. Huang, Y. Zhang, H. Wu, S. Miao, H. Liu, Y. Dong, A. Zhu, and D. Qiu: Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Mater. Sci. Eng., C 75, 590 (2017).

    Article  CAS  Google Scholar 

  14. C. Brinker and G. Scherer: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1990).

    Google Scholar 

  15. Y. Xu, W. Zheng, and W. Liu: Enhanced photocatalytic activity of supported TiO2: Dispersing effect of SiO2. J. Photochem. Photobiol., A 122, 57 (1999).

    Article  CAS  Google Scholar 

  16. T. Ohno, K. Tokieda, S. Higashida, and M. Matsumura: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A 244, 383 (2003).

    Article  CAS  Google Scholar 

  17. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, and A.A. Sokol: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798 (2013).

    Article  CAS  Google Scholar 

  18. A. Mahyar and A.R. Amani-Ghadim: Influence of solvent type on the characteristics and photocatalytic activity of TiO2 nanoparticles prepared by the sol–gel method. Micro & Nano Lett. 6, 244 (2011).

    Article  CAS  Google Scholar 

  19. M.A. Behnajady, H. Eskandarloo, N. Modirshahla, and M. Shokri: Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278, 10 (2011).

    Article  CAS  Google Scholar 

  20. E. Alonso, I. Montequi, and M.J. Cocero: Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. J. Supercrit. Fluids 49, 233 (2009).

    Article  CAS  Google Scholar 

  21. C. Andrés, C. López, S. Esperanza, R. Gómez, A.C. Hurtado, S. Azucena, and G. Duarte: Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants. Rev. Fac. Ing., Univ. Antioquia 57, 49 (2011).

    Google Scholar 

  22. Y.C. Wu and Y.C. Tai: Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method. J. Nanoparticle Res. 15, 1686 (2013).

    Article  Google Scholar 

  23. X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, and J. Xie: Graphene in photocatalysis: A review. Small 12, 6640 (2016).

    Article  CAS  Google Scholar 

  24. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  25. R. Ghayoor, A. Keshavarz, and M.N. Soltani Rad: Facile preparation of TiO2 nanoparticles decorated by the graphene for enhancement of dye-sensitized solar cell performance. J. Mater. Res. 34, 2014 (2019).

    Article  CAS  Google Scholar 

  26. L. Hu, J. Yan, C. Wang, B. Chai, and J. Li: Direct electrospinning method for the construction of z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chin. J. Catal. 40, 458 (2019).

    Article  CAS  Google Scholar 

  27. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras, and A.M.T. Silva: Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal., B 123–124, 241 (2012).

    Article  CAS  Google Scholar 

  28. M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park, and P.J. Yoo: Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4, 3893 (2012).

    Article  CAS  Google Scholar 

  29. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher: Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030 (2017).

    Article  CAS  Google Scholar 

  30. S. Pei and H.M. Cheng: The reduction of graphene oxide. Carbon 50, 3210 (2012).

    Article  CAS  Google Scholar 

  31. B.S. Gonçalves, H.G. Palhares, T.C.C. de Souza, V.G. de Castro, G.G. Silva, M. Houmard, and E.H.M. Nunes: Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide–TiO2 nanocomposites prepared by hydrothermal synthesis. J. Mater. Res. Technol. doi: https://doi.org/10.1016/j.jmrt.2019.10.020.

  32. O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich, and S. Thongtem: Effect of alcohol solvents on TiO2 films prepared by sol–gel method. Surf. Coat. Technol. 326, 310 (2017).

    Article  CAS  Google Scholar 

  33. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, and M. Khalaj: Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions. J. Colloid Interface Sci. 453, 237 (2015).

    Article  CAS  Google Scholar 

  34. Y. Zhu, T. Liu, and C. Ding: Structural characterization of TiO2 ultrafine particles. J. Mater. Res. 14, 442 (1999).

    Article  CAS  Google Scholar 

  35. P. Song, X.Y. Zhang, M.X. Sun, X.L. Cui, and Y.H. Lin: Graphene oxide modified TiO2 nanotube arrays: Enhanced visible light photoelectrochemical properties. Nanoscale 4, 1800 (2012).

    Article  CAS  Google Scholar 

  36. M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, and A. Jorio: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).

    Article  CAS  Google Scholar 

  37. Y. Zhang, N. Zhang, Z.R. Tang, and Y.J. Xu: Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 14, 9167 (2012).

    Article  CAS  Google Scholar 

  38. D. Liang, C. Cui, H. Hub, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu, and H. Shen: One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J. Alloys Compd. 582, 236 (2014).

    Article  CAS  Google Scholar 

  39. K.S.W. Sing: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54, 2201 (1982).

    Article  Google Scholar 

  40. V.G. Castro, J.C. Neves, N.M. Pereira, A.L.S. Assis, L.A. Montoro, and G.G. Silva: BR Patent No. 102016005632-2 A2, 2017.

  41. P. Tancredi, O. Moscoso Londoño, P.C. Rivas Rojas, M. Knobel, and L.M. Socolovsky: Step-by-step synthesis of iron-oxide nanoparticles attached to graphene oxide: A study on the composite properties and architecture. Mater. Res. Bull. 107, 255 (2018).

    Article  CAS  Google Scholar 

  42. R. López and R. Gómez: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol–Gel Sci. Technol. 61, 1 (2012).

    Article  CAS  Google Scholar 

  43. L. Gao and Q. Zhang: Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles. Scr. Mater. 44, 1195 (2001).

    Article  CAS  Google Scholar 

  44. K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, and O. Šolcová: Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B 89, 494 (2009).

    Article  CAS  Google Scholar 

  45. S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, and C. Sanchez: Quantum size effect in TiO2 nanoparticles: Does it exist? Appl. Surf. Sci. 162, 565 (2000).

    Article  Google Scholar 

  46. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, and Y.H. Tseng: Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal., B 68, 1 (2006).

    Article  CAS  Google Scholar 

  47. K.Y. Lian, Y.F. Ji, X.F. Li, M.X. Jin, D.J. Ding, and Y. Luo: Big bandgap in highly reduced graphene oxides. J. Phys. Chem. C 117, 6049 (2013).

    Article  CAS  Google Scholar 

  48. X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, and Z. Fan: Comparing graphene–TiO2 nanowire and graphene–TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces 4, 3944 (2012).

    Article  CAS  Google Scholar 

  49. M.T. Uddin, M.A. Rahman, M. Rukanuzzaman, and M.A. Islam: A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl. Water Sci. 7, 2831 (2017).

    Article  CAS  Google Scholar 

  50. F. Xu and P. Na: String and ball-like TiO2/rGO composites with high photo-catalysis degradation capability for methylene blue. Trans. Tianjin Univ. 24, 272 (2018).

    Article  CAS  Google Scholar 

  51. Y. Ru, L. Yang, Y. Li, W. Jiang, Y. Li, Y. Luo, L. Yang, T. Li, and S. Luo: Photoelectrocatalytic reduction of CO2 on titania nanotube arrays modified by Pd and RGO. J. Mater. Sci. 53, 10351 (2018).

    Article  CAS  Google Scholar 

  52. P. Shao, Z. Ren, J. Tian, S. Gao, X. Luo, W. Shi, B. Yan, J. Li, and F. Cui: Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets: A superior photocatalyst for degradation of bisphenol S. Chem. Eng. J. 323, 64 (2017).

    Article  CAS  Google Scholar 

  53. R. Konaka, E. Kasahara, W.C. Dunlap, Y. Yamamoto, K.C. Chien, and M. Inoue: Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biol. Med. 27, 294 (1999).

    Article  CAS  Google Scholar 

  54. M. Brustolon and E. Giamello: Electron Paramagnetic Resonance: A Practitioner’s Toolkit (John Wiley and Sons, Hoboken, 2008).

    Google Scholar 

  55. J. Zhu, Y. Wang, J. Liu, and Y. Zhang: Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind. Eng. Chem. Res. 53, 13711 (2014).

    Article  CAS  Google Scholar 

  56. H. Kim, S.O. Kang, S. Park, and H.S. Park: Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J. Ind. Eng. Chem. 21, 1191 (2015).

    Article  CAS  Google Scholar 

  57. V. Loryuenyong, K. Angamnuaysiri, J. Sukcharoenpong, and A. Suwannasri: Sol–gel derived mesoporous titania nanoparticles: Effects of calcination temperature and alcoholic solvent on the photocatalytic behavior. Ceram. Int. 38, 2233 (2012).

    Article  CAS  Google Scholar 

  58. F. Wang and K. Zhang: Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A: Chem. 345, 101 (2011).

    Article  CAS  Google Scholar 

  59. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus: Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949 (2012).

    Article  CAS  Google Scholar 

  60. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, and C.Q. Sun: One-step synthesis of CdS–TiO2–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange. Catal. Sci. Technol. 2, 754 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from PRPq-UFMG (05-2016), CNPq (305013/2017-3 and 301423/2018-0), FAPEMIG (APQ-00792-17 and red-00102-16), and CAPES (PROEX). We acknowledge the support from UFMG Microscopy Center and INCT-Acqua. We also thank professors Rodrigo Oréfice, Leandro Soares, and Adriana França for the great support given to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno S. Gonçalves, Manuel Houmard or Eduardo H. M. Nunes.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, B.S., Silva, L.M.C., de Souza, T.C.C. et al. Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. Journal of Materials Research 34, 3918–3930 (2019). https://doi.org/10.1557/jmr.2019.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.342

Navigation