Skip to main content
Log in

Sol–gel derived silica/polyethylene glycol hybrids as potential oligonucleotide vectors

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Until recently, mesoporous silica (MPS) particles have been successfully used in various biomedical applications including drug delivery. In the past decades, the research on MPS shifted sharply to gene delivery owing to its biocompatible, mesoporous structure that allows for loading oligonucleotides, shielding in the bloodstream, and delivering them to patient cells’ cytoplasm to stop cells’ genetic transcription. Until now, researchers faced several unique challenges and MPS, as oligonucleotide vectors, could not reach the clinical stage. In this study, material-related challenges were endeavored to overcome by a combined particle synthesis/oligo-loading strategy. DNA-encapsulated silica/polyethylene glycol (PEG) hybrid xerogels were synthesized at one step, via sol–gel technique. The xerogels were grinded into particles and characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, and gas adsorption analysis. The results demonstrated that uniform oligo-loaded silica/PEG hybrid xerogels could be synthesized without surface modification. Oligonucleotides were encapsulated inside the whole porous network, rather than attached only to particle surfaces as such in the conventional route. The results showed that PEG incorporation led to formation of monolithic xerogels, which could be grinded into spherical particles (557 ± 110 nm) with well-defined edges. Due to grinding, PEG chains were present both in the interior and on the surface of the particles. 10% PEG incorporation into silica precursor (tetraethyl orthosilicate) increased the resistance of DNA-encapsulated silica against protein degradation. In the overall sol–gel-derived silica/PEG hybrid materials were revealed as potential candidates for gene delivery applications such as RNA interference therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S.H. Cheng, C.H. Lee, M.C. Chen, J.S. Souris, F.G. Tseng, C.S. Yang, C.Y. Mou, C.T. Chen, and L.W. Lo: Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. J. Mater. Chem. 20, 6149 (2010).

    Article  CAS  Google Scholar 

  2. I. Slowing, B.G. Trewyn, and V.S.Y. Lin: Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 128, 14792 (2006).

    Article  CAS  Google Scholar 

  3. X. Shi, Y. Wang, L. Ren, N. Zhao, Y. Gong, and D.A. Wang: Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater. 5, 1697 (2009).

    Article  CAS  Google Scholar 

  4. J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, and T. Hyeon: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. 120, 8566 (2008).

    Article  Google Scholar 

  5. W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  6. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato: The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 63, 988 (1990).

    Article  CAS  Google Scholar 

  7. M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, and M. Manzano: Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 23, 308 (2017).

    Article  CAS  Google Scholar 

  8. J. Zhang and K. Cai: Integration of polymers in the pore space of mesoporous nanocarriers for drug delivery. J. Mater. Chem. B 5, 8891 (2017).

    Article  CAS  Google Scholar 

  9. H.S. Shin, Y.K. Hwang, and S. Huh: Facile preparation of ultra-large pore mesoporous silica nanoparticles and their application to the encapsulation of large guest molecules. ACS Appl. Mater. Interfaces 6, 1740 (2014).

    Article  CAS  Google Scholar 

  10. S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B.S. Varnamkhasti, and A.A. Saboury: Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 109, 1100 (2019).

    Article  CAS  Google Scholar 

  11. T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J.I. Zink, and A.E. Nel: Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 3273 (2009).

    Article  CAS  Google Scholar 

  12. F. Torney, B.G. Trewyn, V.S-Y. Lin, and K. Wang: Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295 (2007).

    Article  CAS  Google Scholar 

  13. A. Baeza, M. Colilla, and M. Vallet-Regí: Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin. Drug Deliv. 12, 319 (2015).

    Article  CAS  Google Scholar 

  14. B.R. Anderson, H. Muramatsu, B.K. Jha, R.H. Silverman, D. Weissman, and K. Kariko: Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329 (2011).

    Article  CAS  Google Scholar 

  15. L. Li, X. Hu, M. Zhang, S. Ma, F. Yu, S. Zhao, N. Liu, Z. Wang, Y. Wang, H. Guan, X. Pan, Y. Gao, Y. Zhang, Y. Liu, Y. Yang, X. Tang, M. Li, C. Liu, Z. Li, and X. Mei: Dual tumor-targeting nanocarrier system for siRNA delivery based on pRNA and modified chitosan. Mol. Ther.-Nucleic Acids 8, 169 (2017).

    Article  CAS  Google Scholar 

  16. H-K. Na, M-H. Kim, K. Park, S-R. Ryoo, K.E. Lee, H. Jeon, R. Ryoo, C. Hyeon, and D-H. Min: Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8, 1752 (2012).

    Article  CAS  Google Scholar 

  17. Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang, W. Bu, L. Guo, and Y. Chen: The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31, 1085 (2010).

    Article  CAS  Google Scholar 

  18. M. Shehata Draz, B. Amanda Fang, P. Zhang, Z. Hu, S. Gu, K.C. Weng, J.W. Gray, and F. Frank Chen: Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4, 872 (2014).

    Article  CAS  Google Scholar 

  19. M. Wang, X. Li, Y. Ma, and H. Gu: Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery. Int. J. Pharm. 448, 51 (2013).

    Article  CAS  Google Scholar 

  20. D. Kapusuz and C. Durucan: Synthesis of DNA-encapsulated silica elaborated by sol–gel routes. J. Mater. Res. 28, 175 (2013).

    Article  CAS  Google Scholar 

  21. D. Kapusuz and C. Durucan: Exploring encapsulation mechanism of DNA and mononucleotides in sol–gel derived silica. J. Biomater. Appl. 32, 114 (2017).

    Article  CAS  Google Scholar 

  22. C.J. Brinker and G.W. Scherer: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, Boston, 1990).

    Google Scholar 

  23. R.B. Bhatia, C.J. Brinker, A.K. Gupta, and A.K. Singh: Aqueous sol–gel process for protein encapsulation. Chem. Mater. 12, 2434 (2000).

    Article  CAS  Google Scholar 

  24. A.C. Pierre: The sol–gel encapsulation of enzymes. Biocatal. Biotransform. 22, 145 (2004).

    Article  CAS  Google Scholar 

  25. E. Reátegui, L. Kasinkas, K. Kniesz, M.A. Lefebvre, and A. Aksan: Silica–PEG gel immobilization of mammalian cells. J. Mater. Chem. B 2, 7440 (2014).

    Article  CAS  Google Scholar 

  26. K.D. Kwon, V. Vadillo-Rodriguez, B.E. Logan, and J.D. Kubicki: Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochim. Cosmochim. Acta 70, 3803 (2006).

    Article  CAS  Google Scholar 

  27. M. Fujiwara, F. Yamamoto, K. Okamoto, K. Shiokawa, and R. Nomura: Adsorption of duplex DNA on mesoporous silicas: Possibility of inclusion of DNA into their mesopores. Anal. Chem. 77, 8138 (2005).

    Article  CAS  Google Scholar 

  28. S. Sharma, R.W. Johnson, and T.A. Desai: XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosens. Bioelectron. 20, 227 (2004).

    Article  CAS  Google Scholar 

  29. T. Gross, M. Ramm, H. Sonntag, W. Unger, H.M. Weijers, and E.H. Adem: An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference. Surf. Interface Anal. 18, 59 (1992).

    Article  CAS  Google Scholar 

  30. D.A. Stephenson and N.J. Binkowski: X-ray photoelectron spectroscopy of silica in theory and experiment. J. Non-Cryst. Solids 22, 399 (1976).

    Article  CAS  Google Scholar 

  31. A. Beganskienė, A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, and A. Kareiva: FTIR, TEM, and NMR investigations of Stöber silica nanoparticles. Mater. Sci. Eng. C 10, 287 (2004).

    Google Scholar 

  32. M.C. Matos, L.M. Ilharco, and R.M. Almeida: The evolution of TEOS to silica gel and glass by vibrational spectroscopy. J. Non-Cryst. Solids 147–148, 232 (1992).

    Article  Google Scholar 

  33. B.B.R.K. Nariyal and P. Kothari: FTIR measurements of SiO2 glass prepared by sol–gel technique. Chem. Sci. Trans. 3, 1064 (2014).

    Google Scholar 

  34. F. Rubio, J. Rubio, and J.L. Oteo: A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc. Lett. 31, 199 (1998).

    Article  CAS  Google Scholar 

  35. A. Akbari, R. Yegani, and B. Pourabbas: Synthesis of poly(ethylene glycol) (PEG) grafted silica nanoparticles with a minimum adhesion of proteins via one-pot one-step method. Colloids Surf., A 484, 206 (2015).

    Article  CAS  Google Scholar 

  36. P-Y. Chu and D.E. Clark: Infrared spectroscopy of silica sols–effects of water concentration, catalyst, and aging. Spectrosc. Lett. 25, 201 (1992).

    Article  Google Scholar 

  37. P. Lesot, S. Chapuis, J.P. Bayle, J. Rault, E. Lafontaine, A. Campero, and P. Judeinstein: Structural–dynamical relationship in silica PEG hybrid gels. J. Mater. Chem. 8, 147 (1998).

    Article  CAS  Google Scholar 

  38. M.S.W. Vong, N. Bazin, and P.A. Sermon: Chemical modification of silica gels. J. Sol–Gel Sci. Technol. 8, 499 (1997).

    CAS  Google Scholar 

  39. Z. Alothman: A Review: Fundamental aspects of silicate mesoporous materials. Materials (Basel) 5, 2874 (2012).

    Article  CAS  Google Scholar 

  40. S.T. Saito, G. Silva, C. Pungartnik, and M. Brendel: Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy. J. Photochem. Photobiol., B 111, 59 (2012).

    Article  CAS  Google Scholar 

  41. B. Darvishi, L. Farahmand, and K. Majidzadeh-A: Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol. Ther.-Nucleic Acids 7, 164 (2017).

    Article  CAS  Google Scholar 

  42. J. Meissner, A. Prause, B. Bharti, and G.H. Findenegg: Characterization of protein adsorption onto silica nanoparticles: Influence of pH and ionic strength. Colloid Polym. Sci. 293, 3381 (2015).

    Article  CAS  Google Scholar 

  43. A. Lazaro, N. Vilanova, L.D. Barreto Torres, G. Resoort, I.K. Voets, and H.J.H. Brouwers: Synthesis, polymerization, and assembly of nanosilica particles below the isoelectric point. Langmuir 33, 14618 (2017).

    Article  CAS  Google Scholar 

  44. H.P. Erickson: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32 (2009).

    Article  CAS  Google Scholar 

  45. A.B. Fuertes, P. Valle-Vigón, and M. Sevilla: Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J. Colloid Interface Sci. 349, 173 (2010).

    Article  CAS  Google Scholar 

  46. C.D. Conover, R. Linberg, K.L. Shum, and R.G.L. Shorr: The ability of polyethylene glycol conjugated bovine hemoglobin (PEG-Hb) to adequately deliver oxygen in both exchange transfusion and top-loaded rat models. Artif. Cells, Blood Substitutes, Biotechnol. 27, 93 (1999).

    Article  CAS  Google Scholar 

  47. D.I. Svergun, F. Ekströ, K.D. Vandegriff, A. Malavalli, D.A. Baker, C. Nilsson, and R.M. Winslow: Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: Implications for a new oxygen therapeutic. Biophys. J. 94, 173 (2008).

    Article  CAS  Google Scholar 

  48. J. Lipfert, S. Doniach, R. Das, and D. Herschlag: Understanding nucleic acid–ion interactions. Annu. Rev. Biochem. 83, 813 (2014).

    Article  CAS  Google Scholar 

  49. Hydrophobicity, Polarity and Charge of Hemoglobin (2018): Available at: http://bioinformatics.org/jmol-tutorials/jtat/hemoglobin/5phob/chapter.htm (accessed September 20, 2019).

  50. Q. He, Z. Zhang, F. Gao, Y. Li, and J. Shi: In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small 7, 271 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges Gaziantep University for funding the research under the project No. RM. 16.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Kapusuz.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapusuz, D. Sol–gel derived silica/polyethylene glycol hybrids as potential oligonucleotide vectors. Journal of Materials Research 34, 3787–3797 (2019). https://doi.org/10.1557/jmr.2019.341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.341

Navigation