Skip to main content
Log in

Mesoporous double-perovskite LaAMnNiO6 (A = La, Pr, Sm) photothermal synergistic degradation of gaseous toluene

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of double-perovskite LaAMnNiO6 (A = La, Pr, Sm) catalysts with mesoporous morphology was prepared by a sol–gel method and further applied into photothermal synergistic degradation of gaseous toluene. Transmission electron microscopy and Brunauer–Emmett–Teller characterizations confirmed that double-perovskite LaAMnNiO6 (A = La, Pr, Sm) had obvious mesoporous structure, which can provide a larger specific surface area and further enhancing the reactivity of catalyst. UV-vis and X-ray photoelectron spectroscopy characterization illustrated that LaSmMnNiO6 possessed higher adsorption oxygen content and light absorption capacity, which contribute to the occurrence of catalytic oxidation in the Mars–van Krevelen redox cycle mechanism. A group of active tests showed that the double-perovskite LaSmMnNiO6 catalyst had a lower reaction initiation temperature (starting reaction at 75 °C) and a lower activity temperature of optimal reaction (more than 90% at 255 °C). Moreover, the research on reaction kinetics of the catalyst demonstrated that LaAMnNiO6 (A = La, Pr, Sm) had lower activation energy and thus exhibited better catalytic activity. The results of the study indicate that the double-perovskite LaAMnNiO6 (A = La, Pr, Sm) has broad application prospects in the field of volatile organic pollutant degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. S. Chen, W.B. Li, J.X. Wang, and H. Gong: Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 148, 81 (2009).

    Article  CAS  Google Scholar 

  2. J.E. Colman Lerner, E.Y. Sanchez, J.E. Sambeth, and A.A. Porta: Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos. Environ. 55, 440 (2012).

    Article  CAS  Google Scholar 

  3. G. Huang, R. Brook, M. Crippa, G. Janssens-Maenhout, C. Schieberle, C. Dore, D. Guizzardi, M. Muntean, E. Schaaf, and R. Friedrich: Speciation of anthropogenic emissions of non-methane volatile organic compounds: A global gridded data set for 1970–2012. Atmos. Chem. Phys. 17, 7683 (2017).

    Article  CAS  Google Scholar 

  4. C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, and J. Xiao: Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 370, 128 (2019).

    Google Scholar 

  5. Z. Zhang, Z. Jiang, and W. Shangguan: Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 264, 270 (2016).

    Article  CAS  Google Scholar 

  6. R.F. Dunn and M.M. El-Halwagi: Selection of optimal VOC-condensation systems. Waste Manage. 14, 103 (1994).

    Article  CAS  Google Scholar 

  7. Y. Liu, X. Feng, and D. Lawless: Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J. Membr. Sci. 271, 114 (2006).

    Article  CAS  Google Scholar 

  8. H. Wang, T. Wang, L. Han, M. Tang, J. Zhong, W. Huang, and R. Chen: VOC adsorption and desorption behavior of hydrophobic, functionalized SBA-15. J. Mater. Res. 31, 516 (2016).

    Article  CAS  Google Scholar 

  9. M.S. Kamal, S.A. Razzak, and M.M. Hossain: Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 140, 117 (2016).

    Article  CAS  Google Scholar 

  10. M. Tomatis, H-H. Xu, J. He, and X-D. Zhang: Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A review. J. Chem. 2016, 1–15 (2016).

    Article  CAS  Google Scholar 

  11. H.H. Liu, Y.Z. Li, Y. Yang, M.Y. Mao, M. Zeng, L. Lan, L. Yun, and X.J. Zhao: Highly efficient UV-vis-infrared catalytic purification of benzene on CeMnxOy/TiO2 nanocomposite, caused by its high thermocatalytic activity and strong absorption in the full solar spectrum region. J. Mater. Chem. A 4, 9890 (2016).

    Article  CAS  Google Scholar 

  12. M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, and X. Zhao: Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal. 5, 3278 (2015).

    Article  CAS  Google Scholar 

  13. J. Chen, Z. He, G. Li, T. An, H. Shi, and Y. Li: Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl. Catal., B 209, 146 (2017).

    Article  CAS  Google Scholar 

  14. J. Li, E. Yu, S. Cai, X. Chen, J. Chen, H. Jia, and Y. Xu: Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl. Catal., B 240, 141 (2019).

    Article  CAS  Google Scholar 

  15. J. Li, R. Yang, L. Que, Y. Wang, F. Wang, J. Wu, and S. Li: Optimization of anti-solvent engineering toward high performance perovskite solar cells. J. Mater. Res. 34, 2416 (2019).

    Article  CAS  Google Scholar 

  16. H. Chen and S. Yang: Stabilizing and scaling up carbon-based perovskite solar cells. J. Mater. Res. 32, 3011 (2017).

    Article  CAS  Google Scholar 

  17. S. Ahmed, J. Harris, J. Shaffer, M. Devgun, S. Chowdhury, A. Abdulllah, and S. Banerjee: Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-corrosive devices. J. Mater. Res. 34, 2789 (2019).

    Article  CAS  Google Scholar 

  18. A.J. Pearson: Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. J. Mater. Res. 32, 1798 (2018).

    Article  CAS  Google Scholar 

  19. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, and J. Ravichandran: Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4235 (2018).

    Google Scholar 

  20. T. Maiti, M. Saxena, and P. Roy: Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—A review. J. Mater. Res. 34, 107 (2019).

    Article  CAS  Google Scholar 

  21. J. Zhang, D. Tan, Q. Meng, X. Weng, and Z. Wu: Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Appl. Catal., B 172–173, 18 (2015).

    Article  CAS  Google Scholar 

  22. E.G. Steward and H.P. Rooksby: Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type. Acta Crystallogr. 4, 503 (1951).

    Article  CAS  Google Scholar 

  23. M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 (1993).

    Article  CAS  Google Scholar 

  24. C. Li, W. Wang, C. Xu, Y. Liu, B. He, and C. Chen: Double perovskite oxides Sr2Mg1−xFexMoO6−δ for catalytic oxidation of methane. J. Nat. Gas Chem. 20, 345 (2011).

    Article  CAS  Google Scholar 

  25. K.L. Pan, G.T. Pan, S. Chong, and M.B. Chang: Removal of VOCs from gas streams with double perovskite-type catalysts. J. Environ. Sci. 69, 205 (2018).

    Article  Google Scholar 

  26. J.E. Tasca, A.E. Lavat, and M.G. González: Double perovskites La2MMnO6 as catalyst for propane combustion. J. Asian Ceram. Soc. 5, 235 (2017).

    Article  Google Scholar 

  27. Q. Liu, L.C. Wang, M. Chen, Y. Cao, H.Y. He, and K.N. Fan: Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal. 263, 104 (2009).

    Article  CAS  Google Scholar 

  28. R. Hu, C. Li, X. Wang, Y. Sun, H. Jia, H. Su, and Y. Zhang: Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun. 29, 35 (2012).

    Article  CAS  Google Scholar 

  29. S. Zhao, L. Shi, S. Zhou, J. Zhao, H. Yang, Y. Guo, S. Zhao, L. Shi, S. Zhou, J. Zhao, H. Yang, and Y. Guo: Size-dependent magnetic properties and Raman spectra of La2NiMnO6 nanoparticles. J. Appl. Phys. 106, 123901 (2009).

    Article  CAS  Google Scholar 

  30. V.M. Gaikwad, K.K. Yadav, S.E. Lofland, K.V. Ramanujachary, S. Chakravertya, A.K. Ganguli, and M. Jha: New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties. J. Magn. Magn. Mater. 471, 8 (2019).

    Article  CAS  Google Scholar 

  31. F. Touahra, A. Rabahi, R. Chebout, A. Boudjemaa, D. Lerari, M. Sehailia, and K. Bachari: Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: An expedient approach to carbon resistance during CO2 reforming of methane. Int. J. Hydrogen Energy 41, 2477 (2016).

    Article  CAS  Google Scholar 

  32. R. Liu, Y. Jiang, F. Gao, W. Du, and Q. Lu: Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn(OH)6 spheres. Sens. Actuators, B 178, 119 (2013).

    Article  CAS  Google Scholar 

  33. X. Li, Y. Yin, C. Yao, S. Zuo, X. Lu, S. Luo, and C. Ni: La1−xCexMnO3/attapulgite nanocomposites as catalysts for NO reduction with NH3 at low temperature. Particuology 26, 66 (2016).

    Article  CAS  Google Scholar 

  34. M. Mao, Y. Li, J. Hou, M. Zeng, and X. Zhao: Extremely efficient full solar spectrum light driven thermocatalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst. Appl. Catal., B 174, 496 (2015).

    Article  CAS  Google Scholar 

  35. J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L.Y. Shi, and D.S. Zhang: Investigation of the facet-dependent catalytic performance of Fe2O3/CeO2 for the selective catalytic reduction of NO with. J. Phys. Chem. C 120, 1523 (2016).

    Article  CAS  Google Scholar 

  36. Y. Pan, Y. Shen, Q. Jin, and S. Zhu: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).

    Article  CAS  Google Scholar 

  37. A. Xie, Y. Tang, X. Huang, X. Jin, P. Gu, S. Luo, C. Yao, and X. Li: Three-dimensional nanoflower MnCrOx/Sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature. Chem. Eng. J. 370, 897 (2019).

    Article  CAS  Google Scholar 

  38. Y. Tang, Y. Tao, J. Wu, L. Xu, X. Huang, X. Zhou, A. Xie, S. Luo, C. Yao, and X. Li: MnFeTiOx/attapulgite catalysts with excellent potassium resistance for SCR of NOx with NH3 at low temperatures. J. Mater. Res. 34, 1188 (2019).

    Article  CAS  Google Scholar 

  39. C. Zhang, C. Wang, W. Zhan, Y. Guo, Y. Guo, G. Lu, A. Baylet, and A. Giroir-Fendler: Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl. Catal., B 129, 509 (2013).

    Article  CAS  Google Scholar 

  40. M.C. Álvarez-Galván, V.A. de la Peña O’Shea, G. Arzamend, B. Pawelec, L.M. Gandía, and J.L.G. Fierro: Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal., B 92, 445 (2009).

    Article  CAS  Google Scholar 

  41. X. Zhao, Y. Wang, H. Wu, L. Fang, J. Liang, Q. Fan, and P. Li: Insights into the effect of humic acid on Ni(II) sorption mechanism on illite: Batch, XPS and EXAFS investigations. J. Mol. Liq. 248, 1030 (2017).

    Article  CAS  Google Scholar 

  42. X. Li, H. Shi, W. Zhu, S. Zuo, X. Lu, S. Luo, Z. Li, C. Yao, and Y. Chen: Nanocomposite LaFe1−xNixO3/palygorskite catalyst for photo-assisted reduction of NOx: Effect of Ni doping. Appl. Catal., B 231, 92 (2018).

    Article  CAS  Google Scholar 

  43. D. Guo, Q. Yang, P. Chen, Y. Chu, Y. Zhang, and P. Rao: The influence of micronization on the properties of Pr–ZrSiO4 pigment. Dyes Pigm. 153, 74 (2018).

    Article  CAS  Google Scholar 

  44. H. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, and L. Medvecky: XPS characterization of SmNbO4 and SmTaO4 precursors prepared by sol–gel method. Appl. Surf. Sci. 473, 1 (2019).

    Article  CAS  Google Scholar 

  45. Z. Wang, X. Li, H. Qian, S. Zuo, X. Yan, Q. Chen, and C. Yao: Upconversion Tm3+:CeO2/palygorskite as direct Z-scheme heterostructure for photocatalytic degradation of bisphenol A. J. Photochem. Photobiol., A 372, 42 (2019).

    Article  CAS  Google Scholar 

  46. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  47. Y.X. Liu, H.X. Dai, Y.C. Du, J.G. Deng, L. Zhang, Z.X. Zhao, and C.T. Au: Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J. Catal. 287, 149 (2012).

    Article  CAS  Google Scholar 

  48. H. Ziaei-Azad, A. Khodadadi, P. Esmaeilnejad-Ahranjani, and Y. Mortazavi: Effects of Pd on enhancement of oxidation activity of LaBO3 (B = Mn, Fe, Co, and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles. Appl. Catal., B 102, 62 (2011).

    Article  CAS  Google Scholar 

  49. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  50. Y. Lu, Q. Dai, and X. Wang: Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts. Catal. Commun. 54, 114 (2014).

    Article  CAS  Google Scholar 

  51. M.E. Rivas, C.E. Hori, J.L.G. Fierro, M.R. Goldwasser, and A. Griboval-Constant: H2 production from CH4 decomposition: Regeneration capability and performance of nickel and rhodium oxide catalysts. J. Power Sources 184, 265 (2008).

    Article  CAS  Google Scholar 

  52. Y.X. Liu, H.X. Dai, J.G. Deng, Y.C. Du, X.W. Li, Z.X. Zhao, Y. Wang, B. Gao, H. Yang, and G. Guo: In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM/LaMnO3 for the combustion of toluene and methanol. Appl. Catal. B Environ. 140–141, 493 (2013).

    Article  CAS  Google Scholar 

  53. S. Cai, H. Hu, H. Li, L. Shi, and D. Zhang: Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 8, 3588 (2016).

    Article  CAS  Google Scholar 

  54. T. Boningari, P.R. Ettireddy, A. Somogyvari, and Y. Liu: Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 325, 145 (2015).

    Article  CAS  Google Scholar 

  55. J. Li, R. Hu, J. Zhang, W. Meng, Y. Du, Y. Si, and Z. Zhang: Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion. Fuel 178, 148 (2016).

    Article  CAS  Google Scholar 

  56. F.C. Buciuman, F. Patcas, and J.C. Menezo: Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites: 1. Oxidation of hydrogen and propene. Appl. Catal. B Environ. 35, 175 (2002).

    Article  CAS  Google Scholar 

  57. A. Giroir-Fendler, M. Alves-Fortunato, M. Richard, C. Wnag, J.A. Díaz, S. Gil, C. Zhang, F. Can, N. Bion, and Y. Guo: Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Appl. Catal. B Environ. 180, 29 (2016).

    Article  CAS  Google Scholar 

  58. H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, and X. Wang: Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chem. Eng. J. 366, 368 (2019).

    Article  CAS  Google Scholar 

  59. Y. Wang, Y. Wang, L. Yu, J. Wang, B. Du, and X. Zhang: Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: Insight into the catalytic mechanism. Chem. Eng. J. 368, 115 (2019).

    Article  CAS  Google Scholar 

  60. D. Xu, X. Lai, W. Guo, and P. Da: Microwave-assisted catalytic degradation of methyl orange in aqueous solution by ferrihydrite/maghemite nanoparticles. J. Water Process Eng. 16, 270 (2017).

    Article  Google Scholar 

  61. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Social Development Fund of Jiangsu Province (BE2016654).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Xie or Shiping Luo.

Additional information

c)

These authors contributed equally to this work.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Tao, Y., Wang, Q. et al. Mesoporous double-perovskite LaAMnNiO6 (A = La, Pr, Sm) photothermal synergistic degradation of gaseous toluene. Journal of Materials Research 34, 3439–3449 (2019). https://doi.org/10.1557/jmr.2019.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.273

Navigation