Skip to main content
Log in

Surface energetics of carbon nanotubes–based nanocomposites fabricated by microwave-assisted approach

  • Article
  • Thermodynamics of Complex Solids
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using ethanol adsorption calorimetry, the surface energetics of two carbon substrates and two products in microwave-assisted carbon nanotube (CNT) growth was studied. In this study, the ethanol adsorption enthalpies of the two graphene-based samples at 25 °C were measured successfully. Specifically, the near-zero differential enthalpies of ethanol adsorption are −75.7 kJ/mol for graphene and −63.4 kJ/mol for CNT-grafted graphene. Subsequently, the differential enthalpy curve of each sample becomes less exothermic until reaching a plateau, −55.8 kJ/mol for graphene and −49.7 kJ/mol for CNT-grafted graphene, suggesting favorable adsorbate–adsorbent binding. Moreover, the authors interpreted and discussed the partial molar entropy and chemical potential of adsorption as the ethanol surface coverage (loading) increases. Due to the low surface areas of carbon black–based samples, adsorption calorimetry could not be performed. This model study demonstrates that using adsorption calorimetry as a fundamental tool and ethanol as the molecular probe, the overall surface energetics of high–surface area carbon materials can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, and K. Jiang: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4, 5827 (2010).

    Article  CAS  Google Scholar 

  2. I. Kang, Y.Y. Heung, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, M.J. Schulz, D. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren: Introduction to carbon nanotube and nanofiber smart materials. Composites, Part B 37, 382 (2006).

    Article  Google Scholar 

  3. B. Han, X. Yu, and J. Ou: Multifunctional and smart carbon nanotube reinforced cement-based materials. Nanotechnol. Civ. Infrastruct., 1 (2011).

  4. C.R. Martin, G. Che, B.B. Lakshmi, and E.R. Fisher: Carbon nanotube membranes for electrochemical energy storage and production. Nature 393, 346 (1998).

    Article  Google Scholar 

  5. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929 (2003).

    Article  CAS  Google Scholar 

  6. P.L. McEuen, M.S. Fuhrer, and H. Park: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78 (2002).

    Article  Google Scholar 

  7. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  8. C.D. Scott, S. Arepalli, P. Nikolaev, and R.E. Smalley: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A: Mater. Sci. Process. 72, 573 (2001).

    Article  CAS  Google Scholar 

  9. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91 (1999).

    Article  CAS  Google Scholar 

  10. A.M. Cassell, J.A. Raymakers, J. Kong, and H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484 (1999).

    Article  CAS  Google Scholar 

  11. C.E. Baddour and C. Briens: Carbon nanotube synthesis: A review. Int. J. Chem. React. Eng. 3, 1–20 (2005).

    Google Scholar 

  12. T. Premkumar, R. Mezzenga, and K.E. Geckeler: Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8, 1299 (2012).

    Article  CAS  Google Scholar 

  13. A. Fraczek-Szczypta, M. Bogun, and S. Blazewicz: Carbon fibers modified with carbon nanotubes. J. Mater. Sci. 44, 4721 (2009).

    Article  CAS  Google Scholar 

  14. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, and T.W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91, 6034 (2002).

    Article  CAS  Google Scholar 

  15. X. Zhang and Z. Liu: Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4, 707 (2012).

    Article  CAS  Google Scholar 

  16. Z. Liu, J.L. Wang, V. Kushvaha, S. Poyraz, H. Tippur, S. Park, M. Kim, Y. Liu, J. Bar, H. Chen, and X.Y. Zhang: Poptube approach for ultrafast carbon nanotube growth. Chem. Commun. 47, 9912 (2011).

    Article  CAS  Google Scholar 

  17. Z. Liu, L. Zhang, R.G. Wang, S. Poyraz, J. Cook, M.J. Bozack, S. Das, X.Y. Zhang, and L.B. Hu: Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci. Rep. 6, 1–8 (2016).

    Article  Google Scholar 

  18. Z. Liu, L. Chen, L. Zhang, S. Poyraz, Z.H. Guo, X.Y. Zhang, and J.H. Zhu: Ultrafast Cr(VI) removal from polluted water by microwave synthesized iron oxide submicron wires. Chem. Commun. 50, 8036 (2014).

    Article  CAS  Google Scholar 

  19. Y. Liu, X. Zhang, S. Poyraz, C. Zhang, and J.H. Xin: One-step synthesis of multifunctional zinc-iron-oxide hybrid carbon nanowires by chemical fusion for supercapacitors and interfacial water marbles. ChemNanoMat 4, 546–556 (2018).

    Article  CAS  Google Scholar 

  20. Y. Liu, X. Zhang, and J.H. Xin: Microwave fabrication of hierarchical carbon nanotube/carbon fiber nanocomposite. In Fiber Society’s Spring 2015 Conference, in Conjunction with the 2015 International Conference on Advanced Fibers and Polymer Materials: Functional Fibers and Textiles—Program (2015).

  21. Z. Liu, L. Zhang, S. Poyraz, J. Smith, V. Kushvaha, H. Tippur, and X.Y. Zhang: An ultrafast microwave approach towards multicomponent and multi-dimensional nanomaterials. RSC Adv. 4, 9308 (2014).

    Article  CAS  Google Scholar 

  22. S. Poyraz, M. Flogel, Z. Liu, and X.Y. Zhang: Microwave energy assisted carbonization of nanostructured conducting polymers for their potential use in energy storage applications. Pure Appl. Chem. 89, 173 (2017).

    Article  CAS  Google Scholar 

  23. S. Poyraz, J. Cook, Z. Liu, L. Zhang, A. Nautiyal, B. Hohmann, S. Klamt, and X. Zhang: Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires. J. Mater. Sci. 53, 12178–12189 (2018).

    Article  CAS  Google Scholar 

  24. S. Poyraz, Z. Liu, Y. Liu, and X. Zhang: Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Curr. Org. Chem. 17, 2243–2248 (2013).

    Article  CAS  Google Scholar 

  25. S. Poyraz, L. Zhang, A. Schroder, and X. Zhang: Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl. Mater. Interfaces 7, 22469–22477 (2015).

    Article  CAS  Google Scholar 

  26. D. Wu, X. Guo, H. Sun, and A. Navrotsky: Thermodynamics of methane adsorption on copper HKUST-1 at low pressure. J. Phys. Chem. Lett. 6, 2439 (2015).

    Article  CAS  Google Scholar 

  27. D. Wu, T.M. McDonald, Z. Quan, S.V. Ushakov, P. Zhang, J.R. Long, and A. Navrotsky: Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks. J. Mater. Chem. A 3, 4248 (2015).

    Article  CAS  Google Scholar 

  28. D. Wu, X. Guo, H. Sun, and A. Navrotsky: Interplay of confinement and surface energetics in the interaction of water with a metal–organic framework. J. Phys. Chem. C 120, 7562 (2016).

    Article  CAS  Google Scholar 

  29. D. Wu, J.J. Gassensmith, D. Gouveîa, S. Ushakov, J.F. Stoddart, and A. Navrotsky: Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal–organic framework. J. Am. Chem. Soc. 135, 6790 (2013).

    Article  CAS  Google Scholar 

  30. D. Wu, X. Guo, H. Sun, and A. Navrotsky: Energy landscape of water and ethanol on silica surfaces. J. Phys. Chem. C 119, 15428 (2015).

    Article  CAS  Google Scholar 

  31. D. Wu and A. Navrotsky: Probing the energetics of organic-nanoparticle interactions of ethanol on calcite. Proc. Natl. Acad. Sci. U. S. A. 112, 5314 (2015).

    Article  CAS  Google Scholar 

  32. A. Navrotsky, C. Ma, K. Lilova, and N. Birkner: Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation–reduction equilibria. Science 330, 199 (2010).

    Article  CAS  Google Scholar 

  33. A. Navrotsky, L. Mazeina, and J. Majzlan: Science 319, 1635 (2008).

    Article  CAS  Google Scholar 

  34. S.V. Ushakov and A. Navrotsky: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 1 (2005).

    Article  Google Scholar 

  35. G. Li, H. Sun, H. Xu, X. Guo, and D. Wu: Probing the energetics of molecule-material interactions at interfaces and in nanopores. J. Phys. Chem. C 121, 26141–26154 (2017).

    Article  Google Scholar 

  36. D. Qiu, L. Fu, C. Zhan, J. Lu, and D. Wu: Seeding iron trifluoride nanoparticles on reduced graphite oxide for lithium-ion batteries with enhanced loading and stability. ACS Appl. Mater. Interfaces, 29505–29510 (2018).

Download references

Acknowledgments

This work was supported by the institutional funds from the Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University. Di Wu and Xiaofeng Guo acknowledge the fund of Alexandra Navrotsky Institute for Experimental Thermodynamics. Xianghui Zhang and Chen Yang are supported by Chambroad Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Zhang or Di Wu.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sarwar, S., Zhang, X. et al. Surface energetics of carbon nanotubes–based nanocomposites fabricated by microwave-assisted approach. Journal of Materials Research 34, 3361–3367 (2019). https://doi.org/10.1557/jmr.2019.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.222

Navigation