Skip to main content
Log in

Inorganic coordination polymer quantum sheets@graphene oxide composite photocatalysts: Performance and mechanism

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heterogeneous photocatalytic oxidation technology is currently a technology with the potential to solve environmental pollution and energy shortages. The key to this technology is to find and design efficient photocatalysts. Here, a series of inorganic coordination polymer quantum sheets (ICPQS)@graphene oxide (GO) composite photocatalysts are synthesized by adding GO to the synthesis process of ICPQS: {[CuII(H2O)4][CuI4(CN)6]}n. These composite photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, Zeta potential, and N2 adsorption/desorption isotherms. The photocatalytic degradation of methylene blue showed that the activity of ICPQS@GO composite photocatalysts is better than that of ICPQS. Among ICPQS@GO composite photocatalysts, the 10.6% ICPQS@GO composite photocatalyst has the best activity, which can reach 3.3 mg/(L min) at pH 3. This method of loading low–specific surface area photocatalysts onto GO to improve photocatalytic performance indicates the direction for the synthesis of highly efficient photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J.C. Colmenares and R. Luque: Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev. 43, 765 (2014).

    Article  CAS  Google Scholar 

  2. X.J. Yin and L.G. Zhu: High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. J. Mater. Res. 34, 991 (2019).

    Article  CAS  Google Scholar 

  3. S. Li, C. Wei, Y. Hu, H. Wu, and F. Li: In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(I) polymer. Inorg. Chem. Front. 5, 1282 (2018).

    Article  CAS  Google Scholar 

  4. L. Pasti, E. Sarti, A. Martucci, N. Marchetti, C. Stevanin, and A. Molinari: An advanced oxidation process by photoexcited heterogeneous sodium decatungstate for the degradation of drugs present in aqueous environment. Appl. Catal., B 239, 345 (2018).

    Article  CAS  Google Scholar 

  5. E. Mena, A. Rey, and F.J. Beltrán: TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 339, 369 (2018).

    Article  CAS  Google Scholar 

  6. J. Saavedra, C.J. Pursell, and B.D. Chandler: CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: Evidence for a common water-assisted mechanism. J. Am. Chem. Soc. 140, 3712 (2018).

    Article  CAS  Google Scholar 

  7. P. Schlexer, D. Widmann, R.J. Behm, and G. Pacchioni: CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. ACS Catal. 8, 6513 (2018).

    Article  CAS  Google Scholar 

  8. C.C. Nguyen, D.T. Nguyen, and T.O. Do: A novel route to synthesize C/Pt/TiO2 phase tunable anatase–Rutile TiO2 for efficient sunlight-driven photocatalytic applications. Appl. Catal., B 226, 46 (2018).

    Article  CAS  Google Scholar 

  9. G.L. Chiarello, D. Ferri, and E. Selli: In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Appl. Surf. Sci. 450, 146 (2018).

    Article  CAS  Google Scholar 

  10. S.Y.T. Camacho, A. Rey, M.D. Hernández-Alonso, J. Llorca, F. Medina, and S. Contreras: Pd/TiO2–WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Appl. Surf. Sci. 455, 570–580 (2018).

    Article  CAS  Google Scholar 

  11. R. Shen, J. Xie, Y. Ding, S.Y. Liu, A. Adamski, X. Chen, and X. Li: Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 7, 3243 (2019).

    Article  CAS  Google Scholar 

  12. I. Spanopoulos, C. Tsangarakis, E. Klontzas, E. Tylianakis, G. Froudakis, K. Adil, and P.N. Trikalitis: Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 138, 1568 (2016).

    Article  CAS  Google Scholar 

  13. X. Yang and Q. Xu: Bimetallic metal–organic frameworks for gas storage and separation. Cryst. Growth Des. 17, 1450 (2017).

    Article  CAS  Google Scholar 

  14. Z. Hasan and S.H. Jhung: Removal of hazardous organics from water using metal–organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329 (2015).

    Article  CAS  Google Scholar 

  15. P.Q. Liao, N.Y. Huang, W.X. Zhang, J.P. Zhang, and X.M. Chen: Controlling guest conformation for efficient purification of butadiene. Science 356, 1193 (2017).

    Article  CAS  Google Scholar 

  16. R.B. Lin, S. Xiang, H. Xing, W. Zhou, and B. Chen: Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87 (2019).

    Article  CAS  Google Scholar 

  17. Y. Lu and B. Yan: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(III) complexes. Chem. Commun. 50, 13323 (2014).

    Article  CAS  Google Scholar 

  18. N.B. Shustova, B.D. McCarthy, and M. Dinca: Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 133, 20126 (2011).

    Article  CAS  Google Scholar 

  19. S.X. Li, B.L. Liao, P. Liao, and Y.M. Jiang: Syntheses, structures, fluorescence and anticancer activity of Co(II) and Ag(I) complexes with 4-(3H)-Quinazolinone. Chinese J. Inorg. Chem. 31, 291 (2015).

    CAS  Google Scholar 

  20. B.L. Liao, S.X. Li, and Y.J. Yin: One trinuclear copper(II) polymer based on pyridine-2,4,6-tricarboxylic acid: Synthesis, structure, and magnetic analysis. Russ. J. Coord. Chem. 44, 39 (2018).

    Article  CAS  Google Scholar 

  21. B.L. Liao, G.G. Yang, S.X. Li, Y.M. Jiang, and Y.J. Yin: Syntheses, structures and magnetic analysis of Co(II) coordination polymer based on N-(pyridine-3-sulfonyl amino)-acetate. Chinese J. Inorg. Chem. 33, 1843 (2017).

    CAS  Google Scholar 

  22. Y.J. Yin, B.L. Liao, H.M. Wu, Y.L. Pang, and S.X. Li: Syntheses, structures and magnetic analysis of Co(II), Ni(II) coordination polymers based on pyridine-2,4,6-tricarboxylic acid. Chinese J. Inorg. Chem. 33, 1043 (2017).

    CAS  Google Scholar 

  23. J.J. Jia, S.X. Li, and Y.M. Jiang: Synthesis, crystal structure, and magnetic analysis of Ni(II) polymer based on N-[(3-pyridine)-sulfonyl] aspartate. Inorg. Nano-Met. Chem. 47, 1318 (2017).

    Article  CAS  Google Scholar 

  24. I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, and J.T. Hupp: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302 (2015).

    Article  CAS  Google Scholar 

  25. W. Chen, B. Han, C. Tian, X. Liu, S. Liang, H. Deng, and Z. Lin: MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal., B 244, 996 (2019).

    Article  CAS  Google Scholar 

  26. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  27. Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, and Z. Li: Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal–organic frameworks (MOFs). Chem. Eng. J. 337, 351 (2018).

    Article  CAS  Google Scholar 

  28. J. Huang, X. Zhang, H. Song, C. Chen, F. Han, and C. Wen: Protonated graphitic carbon nitride coated metal–organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci. 441, 85 (2018).

    Article  CAS  Google Scholar 

  29. M.R. Azhar, P. Vijay, M.O. Tadé, H. Sun, and S. Wang: Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere 196, 105 (2018).

    Article  CAS  Google Scholar 

  30. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  31. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  32. R. Zhang, W. Wan, D. Li, F. Dong, and Y. Zhou: Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin. J. Catal. 38, 313 (2017).

    Article  CAS  Google Scholar 

  33. N. Thirugnanam, H. Song, and Y. Wu: Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chin. J. Catal. 38, 2150 (2017).

    Article  CAS  Google Scholar 

  34. J. Yan, M. Xu, B. Chai, H. Wang, C. Wang, and Z. Ren: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).

    Article  CAS  Google Scholar 

  35. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764 (2017).

    Article  CAS  Google Scholar 

  36. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/gC3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  37. S. Li, S. Sun, H. Wu, C. Wei, and Y. Hu: Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal. Sci. Technol. 8, 1696 (2018).

    Article  CAS  Google Scholar 

  38. S. Li, Z. Feng, Y. Hu, C. Wei, H. Wu, and J. Huang: In situ synthesis and high-efficiency photocatalytic performance of Cu(I)/Cu(II) inorganic coordination polymer quantum sheets. Inorg. Chem. 57, 13289 (2018).

    Article  CAS  Google Scholar 

  39. H. Yin and Z. Tang: Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873 (2016).

    Article  CAS  Google Scholar 

  40. L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, T. Ding, N.S. Ginsberg, L.W. Wang, A.P. Alivisatos, and P. Yang: Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518 (2015).

    Article  CAS  Google Scholar 

  41. J. Huang, Y. Li, R.K. Huang, C.T. He, L. Gong, Q. Hu, L.S. Wang, Y.T. Xu, X.Y. Tian, S.Y. Liu, Z.M. Ye, F.X. Wang, D.D. Zhou, W.X. Zhang, and J.P. Zhang: Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 57, 4632 (2018).

    Article  CAS  Google Scholar 

  42. C. Han, Y. Zhang, P. Gao, S. Chen, X. Liu, Y. Mi, and J. Chang: High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 17, 7767 (2017).

    Article  CAS  Google Scholar 

  43. M. Xu, S. Yuan, X.Y. Chen, Y.J. Chang, G. Day, Z.Y. Gu, and H.C. Zhou: Two-dimensional metal–organic framework nanosheets as an enzyme inhibitor: Modulation of the α-chymotrypsin activity. J. Am. Chem. Soc. 139, 8312 (2017).

    Article  CAS  Google Scholar 

  44. U. Sim, J. Moon, J. An, J.H. Kang, S.E. Jerng, J. Moon, and K.T. Nam: N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci. 8, 1329 (2015).

    Article  CAS  Google Scholar 

  45. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, and M. Chhowalla: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51878290), Guangxi Natural Science Foundation of China (No. 2015GXNSFBA139242); 2014 school-level scientific research project, Wuzhou University (2014B012), Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Hechi University (2017HL004 and 2017HJA004), and Master’s degree awarded to the project construction fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixiong Li or Beiling Liao.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Mo, Q., Lai, X. et al. Inorganic coordination polymer quantum sheets@graphene oxide composite photocatalysts: Performance and mechanism. Journal of Materials Research 34, 3220–3230 (2019). https://doi.org/10.1557/jmr.2019.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.207

Navigation