Skip to main content
Log in

Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AZ91 magnesium plates with a thickness of 6 mm were subjected to one- and two-pass friction stir processing (FSP). Microstructures and mechanical properties of the experimental materials were investigated. The results show that FSP can significantly refine the microstructures of magnesium alloys, and two-pass FSP can prepare slightly finer grains in comparison with one-pass FSP. Some coarse β-Mg17Al12 phases existed in the first pass FSP break and dissolve into the matrix under the action of the second pass FSP. Microhardness distribution of the two-pass FSP AZ91 alloy exhibits no too much difference with that of the one-pass FSP AZ91 alloy. Due to further finer microstructures, the tensile properties of the two-pass FSP alloy are slightly higher than those of the one-pass FSP alloy. Both FSP AZ91 alloys show typical ductile fracture characteristics, while the dimples on the two-pass FSP specimen are much deeper and increase in quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Fooladi and S.R. Kiahosseini: Creation and investigation of chitin/HA double-layer coatings on AZ91 magnesium alloy by dipping method. J. Mater. Res. 32, 2532 (2017).

    Article  CAS  Google Scholar 

  2. B.L. Mordike and T. Ebert: Magnesium properties applications potential. Mater. Sci. Eng., A 302, 37 (2001).

    Article  Google Scholar 

  3. H. Shan, Y. Zhang, Y. Li, and Z. Luo: Dissimilar joining of AZ31B magnesium alloy and pure copper via thermo-compensated resistance spot welding. J. Manuf. Process. 30, 570 (2017).

    Article  Google Scholar 

  4. A.H. Feng and Z.Y. Ma: Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scripta Mater. 56, 397 (2007).

    Article  CAS  Google Scholar 

  5. K. Bryla, J. Morgiel, M. Faryna, K. Edalati, and Z. Horita: Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy. Mater. Lett. 212, 323 (2018).

    Article  CAS  Google Scholar 

  6. S. Amani, G. Faraji, and K. Abrinia: Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). J. Manuf. Process. 28, 197 (2017).

    Article  Google Scholar 

  7. S. Zhao, E. Guo, G.J. Cao, L.P. Wang, Y.C. Lun, and Y.C. Feng: Microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing. J. Alloys Compd. 705, 118 (2017).

    Article  CAS  Google Scholar 

  8. F. Schwarz, C. Eilers, and L. Krüger: Mechanical properties of an AM20 magnesium alloy processed by accumulative roll-bonding. Mater. Charact. 105, 144 (2015).

    Article  CAS  Google Scholar 

  9. S.A. Torbati-Sarraf and T.G. Langdon: Properties of a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd. 613, 357 (2014).

    Article  CAS  Google Scholar 

  10. R.S. Mishra and Z.Y. Ma: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 (2005).

    Article  Google Scholar 

  11. S.Y. Xie, R.D. Li, T.C. Yuan, C. Chen, K.C. Zhou, B. Song, and Y.S. Shi: Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni–Cr–Fe coating with nanostructure. Opt. Laser Technol. 99, 374 (2018).

    Article  CAS  Google Scholar 

  12. P. Vijayavel and V. Balasubramanian: Effect of pin profile volume ratio on microstructure and tensile properties of friction stir processed aluminum based metal matrix composites. J. Alloys Compd. 729, 828 (2017).

    Article  CAS  Google Scholar 

  13. A. Raja and V. Pancholi: Effect of friction stir processing on tensile and fracture behavior of AZ91 alloy. J. Mater. Process. Technol. 248, 8 (2017).

    Article  CAS  Google Scholar 

  14. H.S. Arora, H.S. Grewal, H. Singh, B.K. Dhindaw, and S. Mukherjee: Enhancing the mechanical properties of AE42 magnesium alloy through friction stir processing. Adv. Eng. Mater. 16, 571 (2014).

    Article  CAS  Google Scholar 

  15. J.H. Liang, H.J. Li, L.H. Qi, W.L. Tian, X.F. Li, X.J. Chao, and J.F. Wei: Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J. Alloys Compd. 728, 282 (2017).

    Article  CAS  Google Scholar 

  16. D.T. Zhang, S.X. Wang, C. Qiu, and W. Zhang: Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing. Mater. Sci. Eng., A 556, 100 (2012).

    Article  CAS  Google Scholar 

  17. H.J. Zhang, H.J. Liu, and L. Yu: Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Mater. Des. 32, 4402 (2011).

    Article  CAS  Google Scholar 

  18. S.M. Mousavizade, M. Pouranvari, F.M. Ghaini, H. Fujii, and Y.D. Chung: Laser-assisted friction stir processing of IN738LC nickel-based superalloy: Stir zone characteristics. Sci. Technol. Weld. Join. 21, 374 (2016).

    Article  CAS  Google Scholar 

  19. M.M. El-Rayes and E.A. El-Danaf: The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. J. Mater. Process. Technol. 212, 1157 (2012).

    Article  CAS  Google Scholar 

  20. Y. Chen, H. Ding, J. Li, Z. Cai, J. Zhao, and W. Yang: Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. Mater. Sci. Eng., A 650, 281 (2016).

    Article  CAS  Google Scholar 

  21. R. Brown, W. Tang, and A.P. Reynolds: Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties. Mater. Sci. Eng., A 513–514, 115 (2009).

    Article  Google Scholar 

  22. L.J. Baruch, R. Raju, V. Balasubramanian, A.G. Rao, and I. Dinaharan: Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al–7Si–3Cu aluminum alloy. Acta Metall. Sin. 29, 431 (2016).

    Article  Google Scholar 

  23. P. Asadi, G. Faraji, and M.K. Besharati: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51, 247 (2010).

    Article  Google Scholar 

  24. K. Nakata, Y.G. Kim, H. Fuji, T. Tsumura, and T. Komazaki: Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater. Sci. Eng., A 437, 274 (2006).

    Article  Google Scholar 

  25. M. Eftekhari, M. Movahedi, and A.H. Kokabi: Microstructure, strength and wear behavior relationship in Al–Fe3O4 nanocomposite produced by multi-pass friction stir processing. J. Mater. Eng. Perform. 26, 3516 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research Funds for Central University under Grant Nos. (WUT: 2017IVA033 and WUT: 2016IVA032), the 111 Project (B17034) and Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials of South China University of Technology under Grant No. 201510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, F., Yan, F., Wang, W. et al. Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing. Journal of Materials Research 33, 1789–1796 (2018). https://doi.org/10.1557/jmr.2018.98

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.98

Navigation