Skip to main content
Log in

PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The protective effect of poly(methylmethacrylate) (PMMA) cover layers against the degradation of π-conjugated polymers by ozone and photo-oxidation, respectively, has been investigated by UV/Vis spectroscopy. The PMMA films were cast from solution at thicknesses between 20 and 100 nm on top of films of poly(3-hexylthiophene) and poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]. PMMA layers of more than 65 nm in thickness reduce the oxidation rate of the π-conjugated polymers under 15 ppm of ozone in the dark by more than three orders of magnitude, whereas photo-oxidation rates under dry and humid air remain unaffected. The PMMA cover layers are hardly affected by ambient ozone over thousands of hours. Calculations of ozone and oxygen fluxes through the PMMA films reveal that ozonation rates are limited by the diffusion of ozone, whereas photo-oxidation rates are not limited by the diffusion of oxygen, due to the much larger pressure gradient of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. I. Fraga Domínguez, A. Distler, and L. Lüer: Stability of organic solar cells: The influence of nanostructured carbon materials. Adv. Energy Mater. 7, 1601320 (2017).

    Article  Google Scholar 

  2. R. Roesch, T. Faber, E. von Hauff, T.M. Brown, M. Lira-Cantu, and H. Hoppe: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1501407 (2015).

    Article  Google Scholar 

  3. J.U. Lee, J.W. Jung, J.W. Jo, and W.H. Jo: Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265 (2012).

    Article  CAS  Google Scholar 

  4. N. Grossiord, J.M. Kroon, R. Andriessen, and P.W.M. Blom: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2012).

    Article  CAS  Google Scholar 

  5. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, and F.C. Krebs: Stability of polymer solar cells. Adv. Mater. 24, 580 (2012).

    Article  Google Scholar 

  6. S.A. Gevorgyan, I.M. Heckler, E. Bundgaard, M. Corazza, M. Hösel, R.R. Søndergaard, G.A. dos Reis Benatto, M. Jørgensen, and F.C. Krebs: Improving, characterizing and predicting the lifetime of organic photovoltaics. J. Phys. D Appl. Phys. 50, 103001 (2017).

    Article  Google Scholar 

  7. V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, M. Madsen, H-G. Rubahn, U. Ritter, and G. Gobsch: Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives. Appl. Phys. A 122, 255 (2016).

    Article  Google Scholar 

  8. V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, U. Ritter, and G. Gobsch: Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525 (2014).

    Article  CAS  Google Scholar 

  9. M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler, L.N. Inasaridze, P.A. Troshin, L. Lüer, H-J. Egelhaaf, and C. Brabec: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005 (2017).

    Article  CAS  Google Scholar 

  10. H-J. Lee, H-P. Kim, H-M. Kim, J-H. Youn, D-H. Nam, Y-G. Lee, J-G. Lee, A.R. bin Mohd Yusoff, and J. Jang: Solution processed encapsulation for organic photovoltaics. Sol. Energy Mater. Sol. Cells 111, 97 (2013).

    Article  CAS  Google Scholar 

  11. J. Ahmad, K. Bazaka, L.J. Anderson, R.D. White, and M.V. Jacob: Materials and methods for encapsulation of OPV: A review. Renew. Sustain. Energy Rev. 27, 104 (2013).

    Article  CAS  Google Scholar 

  12. M. Giannouli, V.M. Drakonakis, A. Savva, P. Eleftheriou, G. Florides, and S.A. Choulis: Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16, 1134 (2015).

    Article  CAS  Google Scholar 

  13. J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Thérias, and J-L. Gardette: Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells. Sol. Energy Mater. Sol. Cells 99, 240 (2012).

    Article  CAS  Google Scholar 

  14. G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, M. Latrèche, G. Czeremuszkin, and M.R. Wertheimer: A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511–512, 349 (2006).

    Article  Google Scholar 

  15. J.A. Hauch, P. Schilinsky, S.A. Choulis, S. Rajoelson, and C.J. Brabec: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).

    Article  Google Scholar 

  16. J. Lewis: Material challenge for flexible organic devices. Mater. Today 9, 38 (2006).

    Article  CAS  Google Scholar 

  17. S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, and S. Guillerez: Definition of encapsulation barrier requirements: A method applied to organic solar cells. Sol. Energy Mater. Sol. Cells 95, S65 (2011).

    Article  CAS  Google Scholar 

  18. H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, and T. Chassé: Photodegradation of P3HT–A systematic study of environmental factors. Chem. Mater. 23, 145 (2011).

    Article  CAS  Google Scholar 

  19. H. Hintz, H.-J. Egelhaaf, H. Peisert, and T. Chassé: Photo-oxidation and ozonization of poly(3-hexylthiophene) thin films as studied by UV/Vis and photoelectron spectroscopy. Polym. Degrad. Stab. 95, 818 (2010).

    Article  CAS  Google Scholar 

  20. S. Chambon, A. Rivaton, J.L. Gardette, and M. Firon: Photo- and thermal degradation of MDMO-PPV:PCBM blends. Sol. Energy Mater. Sol. Cells 91, 394 (2007).

    Article  CAS  Google Scholar 

  21. M. Manceau, A. Rivaton, J-L. Gardette, S. Guillerez, and N. Lemaître: The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 94, 898 (2009).

    Article  CAS  Google Scholar 

  22. A. Tournebize, M. Seck, A. Vincze, A. Distler, H-J. Egelhaaf, C.J. Brabec, A. Rivaton, H. Peisert, and T. Chassé: Photodegradation of Si-PCPDTBT:PCBM active layer for organic solar cells applications: A surface and bulk investigation. Sol. Energy Mater. Sol. Cells 155, 323 (2016).

    Article  CAS  Google Scholar 

  23. F. Cataldo and M. Omastová: On the ozone degradation of polypyrrole. Polym. Degrad. Stab. 82, 487 (2003).

    Article  CAS  Google Scholar 

  24. J. Nowaczyk, W. Czerwiński, and E. Olewnik: Ozonization of electronic conducting polymers: II. Degradation or doping. Polym. Degrad. Stab. 91, 2022 (2006).

    Article  CAS  Google Scholar 

  25. J. Nowaczyk, P. Olszowy, P. Cysewski, A. Nowaczyk, and W. Czerwiński: Ozonization of electronic conducting polymers, Part III: The action of ozone on poly[3-pentylthiophene] film. Polym. Degrad. Stab. 93, 1275 (2008).

    Article  CAS  Google Scholar 

  26. E.T. Kang, K.G. Neoh, X. Zhang, K.L. Tan, and D.J. Liaw: Surface modification of electroactive polymer films by ozone treatment. Surf. Interface Anal. 24, 51 (1996).

    Article  CAS  Google Scholar 

  27. P.S. Bailey: Ozonation in Organic Chemistry, Vol. I (Academic Press, New York, 1978).

  28. M.L. Chabinyc, R.A. Street, and J.E. Northrup: Effects of molecular oxygen and ozone on polythiophene-based thin-film transistors. Appl. Phys. Lett. 90, 123508 (2007).

    Article  Google Scholar 

  29. J. Heeg, C. Kramer, M. Wolter, S. Michaelis, W. Plieth, and W-J. Fischer: Polythiophene—O3 surface reactions studied by XPS. Appl. Surf. Sci. 180, 36 (2001).

    Article  CAS  Google Scholar 

  30. H. Sirringhaus: 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).

    Article  CAS  Google Scholar 

  31. N. Britigan, A. Alshawa, and S.A. Nizkorodov: Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manage. Assoc. 56, 601 (2006).

    Article  CAS  Google Scholar 

  32. R.P. Lattimer, R.W. Layer, and C.K. Rhee: Chapter 7: Ozone degradation and antiozonants. In Gerard Meurant: Atmospheric Oxidation and Antioxidants, Vol. II, G. Scott ed. (Elsevier B.V., 1993); pp. 363–384.

  33. F. Cataldo: The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological aspects. Polym. Degrad. Stab. 73, 511 (2001).

    Article  CAS  Google Scholar 

  34. R.W. Layer and R.P. Lattimer: Protection of rubber against ozone. Rubber chemistry and technology. Rubber Chem. Technol. 63, 426 (1990).

    Article  CAS  Google Scholar 

  35. R. Atkinson and W.P.L. Carter: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437 (1984).

    Article  CAS  Google Scholar 

  36. R. Criegee: Mechanismus der ozonolyse. Angew. Chem. 87, 765 (1975).

    Article  CAS  Google Scholar 

  37. E.R. Erickson, R.A. Berntsen, E.L. Hill, and P. Kusy: The reaction of ozone with SBR rubbers. Rubber Chem. Technol. 32, 1062 (1959).

    Article  Google Scholar 

  38. M. Strobel, M.J. Walzak, J.M. Hill, A. Lin, E. Karbashewski, and C.S. Lyons: A comparison of gas-phase methods of modifying polymer surfaces. J. Adhes. Sci. Technol. 9, 365 (1995).

    Article  CAS  Google Scholar 

  39. V.A. Pankratov, E.F. Yanson, L.V. Prokof’eva, and V.Y. Yur’ev: Influence of the fractional composition of physical anti-agers on the ozone and weather resistance of vulcanisates. Int. J. Polym. Sci. Technol. 26, T34 (1999).

    Google Scholar 

  40. F. Cataldo: On the ozone protection of polymers having non-conjugated unsaturation. Polym. Degrad. Stab. 72, 287 (2001).

    Article  CAS  Google Scholar 

  41. M. Tokuda, K. Inoue, K. Utsnumomiya, and Y. Hitofude: ACS Meeting Rubber Division (American Chemical Society, Mexico City, 1989).

    Google Scholar 

  42. S-S. Choi: Migration behaviors of wax to surface in rubber vulcanizates. J. Appl. Polym. Sci. 73, 2587 (1999).

    Article  CAS  Google Scholar 

  43. D. Bruck and H. Engels: Correlation of the structural elements of p-phenzlene diamine derivatives with their antidegradant activitz. Kautsch. Gummi Kunstst. 44, 1014 (1991).

    Google Scholar 

  44. W.H. Glaze: Reaction products of ozone: A review. Environ. Health Perspect. 69, 151 (1986).

    Article  CAS  Google Scholar 

  45. S. Rakovsky and G.E. Zaikov: Ozonisation in Organic Chemistry, Nonolefinic Compounds, Vol. 2 (Academy Press, New York, NY, 1982).

    Google Scholar 

  46. R.F. Ohm: Expandierte polymerkügelchen. Gummi, Fasern, Kunstst. 47, 722 (1994).

    CAS  Google Scholar 

  47. B.A. Kaduk and S. Toby: The reaction of ozone with thiophene in the gas phase. Int. J. Chem. Kinet. 9, 829 (1977).

    Article  CAS  Google Scholar 

  48. W. Czerwiñski, J. Nowaczyk, and K. Kania: Ozonization of electronic conducting polymers I. Copolymers based on poly[3-nonylthiophene]. Polym. Degrad. Stab. 80, 93 (2003).

    Article  Google Scholar 

  49. P.S. Bailey and H.H. Hwang: Ozonation of pheny-substituted thiophenes. J. Org. Chem. 50, 1778 (1985).

    Article  CAS  Google Scholar 

  50. H. Rost, J. Ficker, J.S. Alonso, L. Leenders, and I. McCulloch: Air-stable all-polymer field-effect transistors with organic electrodes. Synth. Met. 145, 83 (2004).

    Article  CAS  Google Scholar 

  51. J. Zaumseil: P3HT and other polythiophene field-effect transistors. In P3HT Revisited - From Molecular Scale to Solar Cell Devices, S. Ludwigs ed. (Springer, Heidelberg and Berlin, Germany, 2014); pp. 123–124.

    Google Scholar 

  52. Z. Bao, A. Dodabalapur, and A.J. Lovinger: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108 (1996).

    Article  CAS  Google Scholar 

  53. C. Lungenschmied, G. Dennler, H. Neugebauer, S.N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer: Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 91, 379 (2007).

    Article  CAS  Google Scholar 

  54. C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, and P. Denk: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).

    Article  CAS  Google Scholar 

  55. M.M. Wienk, J.M. Kroon, W.J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, and R.A.J. Janssen: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371 (2003).

    Article  CAS  Google Scholar 

  56. C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S.J. Jia, and S.P. Williams: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839 (2010).

    Article  CAS  Google Scholar 

  57. P.W. Akers, N.C. Hoai Le, A.R.J. Nelson, M. McKenna, C. O’Mahony, D.J. McGillivray, V. Gubala, and D.E. Williams: Surface engineering of poly(methylmethacrylate): Effects on fluorescence immunoassay. Biointerphases 12, 02C415 (2017).

    Article  Google Scholar 

  58. R.J. Klein, D.A. Fischer, and J.L. Lenhart: Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle. Langmuir 24, 8187 (2008).

    Article  CAS  Google Scholar 

  59. G.J. Herrera and J.E. Whitten: Photoemission study of the thermal and photochemical decomposition of a urethane-substituted polythiophene. Synth. Met. 128, 317 (2002).

    Article  CAS  Google Scholar 

  60. J. Hopkins and J.P.S. Badyal: XPS and atomic force microscopy of plasma-treated polysulfone. J. Polym. Sci., Part A: Polym. Chem. 348, 1385 (1996).

    Article  Google Scholar 

  61. K. Fujimoto, Y. Takebayashi, H. Inoue, and Y. Ikada: Ozone induced graft polymerization onto polymer surface. J. Polym. Sci., Part A: Polym. Chem. 31, 1035 (1993).

    Article  CAS  Google Scholar 

  62. A.B. Ponter, W.R. Jones, and R.H. Jansen: Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbonate and polytetrafluoroethylene. In NASA Technical Memorandum 106460 (Luisiana, 1994). Avalible at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940024419.pdf.

  63. H-Y. Nie, M.J. Walzak, and N.S. Mcintyre: Atomic force microscopy study of biaxially oriented polypropylene films. J. Mater. Eng. Perform. 13, 451 (2004).

    Article  CAS  Google Scholar 

  64. D.O.H. Teare, C. Ton-That, and R.H. Bradley: Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 29, 276 (2000).

    Article  CAS  Google Scholar 

  65. T. Wang, A.D.F. Dunbar, P.A. Staniec, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, A.M. Donald, A.J. Ryan, R.A.L. Jones, and D.G. Lidzey: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).

    Article  CAS  Google Scholar 

  66. S. Matteucci, Y. Yampolskii, B.D. Freeman, and I. Pinnau: Materials Science of Membranes for Gas and Vapor Separation (John Wiley & Sons, Ltd, Chichester, U.K., 2006); pp. 1–47.

    Book  Google Scholar 

  67. M. Minelli and G.C. Sarti: Elementary prediction of gas permeability in glassy polymers. J. Membr. Sci. 521, 73 (2017).

    Article  CAS  Google Scholar 

  68. A.K. Biń: Ozone solubility in liquids. Ozone Sci. Eng. 28, 67 (2006).

    Article  Google Scholar 

  69. A.K. Biń: Prediction of oxygen and ozone solubility in liquids with the peng-robinson equation of state. Ozone Sci. Eng. 30, 13 (2008).

    Article  Google Scholar 

  70. K.E. Min and D.R. Paul: Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 26, 1021 (1988).

    Article  CAS  Google Scholar 

  71. J.S. Chiou and D.R. Paul: Sorption and transport of inert gases in PVF2/PMMA blends. J. Appl. Polym. Sci. 32, 4793 (1986).

    Article  CAS  Google Scholar 

  72. Thermo Scientific: 2011 624 (2011).

  73. W.R. Mateker, T. Heumueller, R. Cheacharoen, I.T. Sachs-Quintana, M.D. McGehee, J. Warnan, P.M. Beaujuge, X. Liu, and G.C. Bazan: Molecular packing and arrangement govern the photo-oxidative stability of organic photovoltaic materials. Chem. Mater. 27, 6345 (2015).

    Article  CAS  Google Scholar 

  74. C. Subrahmanyam, D.A. Bulushev, and L. Kiwi-Minsker: Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl. Catal. B Environ. 61, 98 (2005).

    Article  CAS  Google Scholar 

  75. H. Itoh, S. Isegame, H. Miura, S. Suzuki, and I.M. Rusinov: Surface loss rate of ozone in a cylindrical tube. Ozone Sci. Eng. 33, 106 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Alexandru Oprea for support with the gas flow and sensor equipment. We thank E. Nadler for performing the FE-SEM and EDX measurements. The Hitachi SU8030 FE-SEM was partially funded by the German Research Council (DFG) under contract number INST 37/829-1 FUGG. The Bavarian State Government is acknowledged for financial support of the “Solar Factory of the Future” as part of the Energy Campus Nuremberg (FKZ 20.2-3410.5-4-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Egelhaaf.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Früh, A., Egelhaaf, HJ., Hintz, H. et al. PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone. Journal of Materials Research 33, 1891–1901 (2018). https://doi.org/10.1557/jmr.2018.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.74

Navigation