Skip to main content

Advertisement

Log in

Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Coupling oxidation type semiconductors is a feasible strategy to improve the photocatalytic activity of reduction type g-C3N4 photocatalysts. In this work, Bi2O3 was used as an oxidation type semiconductor to construct direct Z-scheme Bi2O3/g-C3N4 photocatalysts by a one-step calcination method. The obtained Bi2O3/g-C3N4 composites exhibited excellent photocatalytic activity and stability toward methylene blue degradation under visible light irradiation. The composite with 1% weight content of Bi2O3 to g-C3N4 exhibited the highest photocatalytic activity with an apparent rate constant of 0.063 min−1, which was 3.0 and 3.7 times higher than that of pure Bi2O3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Bi2O3/g-C3N4 composite was mainly attributed to the improved charge separation efficiency and stronger redox ability. This work gave a new insight in developing g-C3N4-based Z-scheme heterojunction photocatalysts with enhanced photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Mehrjouei, S. Müller, and D. Möller: A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209 (2015).

    Article  CAS  Google Scholar 

  2. C. Chen, W. Ma, and J. Zhao: Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 42, 4206 (2010).

    Article  CAS  Google Scholar 

  3. F. Ding, D. Yang, Z. Tong, Y. Nan, Y. Wang, X. Zou, and Z. Jiang: Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci.: Nano 4, 1455 (2017).

    CAS  Google Scholar 

  4. G. Mamba and A.K. Mishra: Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal., B 198, 347 (2016).

    Article  CAS  Google Scholar 

  5. M.N. Chong, B. Jin, C.W.K. Chow, and C. Saint: Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997 (2010).

    Article  CAS  Google Scholar 

  6. M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au, and S.F. Yin: Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon 86, 217 (2015).

    Article  CAS  Google Scholar 

  7. R. He, J. Zhou, H. Fu, S. Zhang, and C. Jiang: Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 273 (2018).

    Article  CAS  Google Scholar 

  8. H. Jiang, G. Liu, T. Wang, P. Li, J. Lin, and J. Ye: In situ construction of α-Bi2O3/g-C3N4/β-Bi2O3 composites and their highly efficient photocatalytic performances. RSC Adv. 5, 92963 (2015).

    Article  CAS  Google Scholar 

  9. Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Cong, Q. Wang, and H. Jin: Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes: Enhanced activity under visible light irradiation and improved photoelectrochemical activity. RSC Adv. 5, 48983 (2015).

    Article  CAS  Google Scholar 

  10. R. He, S. Cao, and J. Yu: Recent advances in morphology control and surface modification of Bi-based photocatalysts. Acta Phys.-Chim. Sin. 32, 2841 (2016).

    Article  CAS  Google Scholar 

  11. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  12. Z. Zhao, Y. Sun, and F. Dong: Graphitic carbon nitride based nanocomposites: A review. Nanoscale 7, 15 (2014).

    Article  CAS  Google Scholar 

  13. J. Wen, J. Xie, X. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  14. Y. Luo, J. Wang, S. Yu, Y. Cao, K. Ma, Y. Pu, W. Zou, C. Tang, F. Gao, and L. Dong: Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation. J. Mater. Res. (2018). doi: https://doi.org/10.1557/jmr.2017.472.

  15. J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, and J. Yu: Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017).

    Article  CAS  Google Scholar 

  16. J. Fu, J. Yu, C. Jiang, and B. Cheng: g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 7, 1701503 (2017).

    Google Scholar 

  17. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A.A. Al-Ghamdi: Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017).

    Article  CAS  Google Scholar 

  18. Y. Fu, Z. Li, Q. Liu, X. Yang, and H. Tang: Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: Direct Z-scheme mechanism for improved photocatalytic activity. Chin. J. Catal. 38, 2160 (2017).

    Article  CAS  Google Scholar 

  19. K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, and X. Zhang: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).

    Article  CAS  Google Scholar 

  20. F. Wu, X. Li, W. Liu, and S. Zhang: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).

    Article  CAS  Google Scholar 

  21. P. Zhou, J. Yu, and M. Jaroniec: All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920 (2014).

    Article  CAS  Google Scholar 

  22. D. Chen, S. Wu, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen, and Z. Fang: A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 193, 232 (2018).

    Article  CAS  Google Scholar 

  23. W. Shan, Y. Hu, Z. Bai, M. Zheng, and C. Wei: In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal., B 188, 1 (2016).

    Article  CAS  Google Scholar 

  24. S. Xue, X. Hou, W. Xie, X. Wei, and D. He: Dramatic improvement of photocatalytic activity for N-doped Bi2O3/g-C3N4 composites. Mater. Lett. 161, 640 (2015).

    Article  CAS  Google Scholar 

  25. Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, and H. Li: g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. J. Phys. Chem. Solids 76, 112 (2015).

    Article  CAS  Google Scholar 

  26. X. Dang, X. Zhang, Y. Chen, X. Dong, G. Wang, C. Ma, X. Zhang, H. Ma, and M. Xue: Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. J. Nanopart. Res. 17, 93 (2015).

    Article  CAS  Google Scholar 

  27. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, and X. Fu: Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 280, 713 (2014).

    Article  CAS  Google Scholar 

  28. G. Liu, Y. Lu, J. Zhang, Z. Li, Z. Feng, and C. Li: Phase transformation and photocatalytic properties of Bi2O3 prepared using a precipitation method. Acta Phys.-Chim. Sin. 32, 1247 (2016).

    Article  CAS  Google Scholar 

  29. H. Yan, Y. Chen, and S. Xu: Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy 37, 125 (2012).

    Article  CAS  Google Scholar 

  30. Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, and Y. Xia: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal., B 202, 611 (2017).

    Article  CAS  Google Scholar 

  31. B. Zhu, P. Xia, Y. Li, W. Ho, and J. Yu: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 391, 175 (2017).

    Article  CAS  Google Scholar 

  32. T. Di, B. Zhu, B. Cheng, J. Yu, and J. Xu: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532 (2017).

    Article  CAS  Google Scholar 

  33. S. Chen, Y. Hu, S. Meng, and X. Fu: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal., B 150–151, 564 (2014).

    Article  CAS  Google Scholar 

  34. S. Yan, Z. Li, and Z. Zou: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397 (2009).

    Article  CAS  Google Scholar 

  35. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, and G. Cai: Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 42, 8606 (2013).

    Article  CAS  Google Scholar 

  36. H.G. Cui, Z.Y. Chen, S. Zhong, K.L. Wooley, and D.J. Pochan: Block copolymer assembly via kinetic control. Science 317, 647 (2007).

    Article  CAS  Google Scholar 

  37. S. Fu, Y. He, Q. Wu, Y. Wu, and T. Wu: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).

    Article  CAS  Google Scholar 

  38. B. Chai, F. Zou, and W. Chen: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30, 1128 (2015).

    Article  CAS  Google Scholar 

  39. B. Zhu, P. Xia, W. Ho, and J. Yu: Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188 (2015).

    Article  CAS  Google Scholar 

  40. M. Zhou, Z. Hou, and X. Chen: Graphitic-C3N4 nanosheets: Synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities. Dalton Trans. 46, 10641 (2017).

    Article  CAS  Google Scholar 

  41. Q. Xu, B. Cheng, J. Yu, and G. Liu: Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon 118, 241 (2017).

    Article  CAS  Google Scholar 

  42. M. Wang, M. Fang, C. Tang, L. Zhang, Z. Huang, Y. Liu, and X. Wu: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    Article  CAS  Google Scholar 

  43. S. Fu, Y. He, Q.W., Y. Wu, and T. Wu: n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 1, 317 (2017).

    Article  Google Scholar 

  44. M. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, and J. Zhang: Enhanced visible light photocatalytic H2 production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196 (2015).

    Article  CAS  Google Scholar 

  45. S. Cao, Y. Yuan, J. Barber, S. Loo, and C. Xue: Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation. Appl. Surf. Sci. 319, 344 (2014).

    Article  CAS  Google Scholar 

  46. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  47. D. Xu, Y. Hai, X. Zhang, S. Zhang, and R. He: Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2. Appl. Surf. Sci. 400, 530 (2017).

    Article  CAS  Google Scholar 

  48. G. Yu, K. Wang, W. Xiao, and B. Cheng: Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 16, 11492 (2014).

    Article  CAS  Google Scholar 

  49. D. Xu, B. Cheng, S. Cao, and J. Yu: Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal., B 164, 380 (2015).

    Article  CAS  Google Scholar 

  50. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2018).

    Article  CAS  Google Scholar 

  51. J. Liu and J. Zhang: Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J. Mater. Res. 31, 1448 (2016).

    Article  CAS  Google Scholar 

  52. D. Xu, B. Cheng, J. Zhang, W. Wang, J. Yu, and W. Ho: Photocatalytic activity of Ag2MO4 (M = Cr, Mo, W) photocatalysts. J. Mater. Chem. A 3, 20153 (2015).

    Article  CAS  Google Scholar 

  53. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764 (2017).

    Article  CAS  Google Scholar 

  54. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).

    Article  CAS  Google Scholar 

  55. A. Fujishima and X. Zhang: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9, 750 (2006).

    Article  CAS  Google Scholar 

  56. J. Liu, B. Cheng, and J. Yu: A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys. Chem. Chem. Phys. 18, 31175 (2016).

    Article  CAS  Google Scholar 

  57. W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, and T. Peng: Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal., B 219, 693 (2017).

    Article  CAS  Google Scholar 

  58. Z. Shen, Z. Zhao, J. Qian, Z. Peng, and X. Fu: Synthesis of WO3− x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the NSFC (51402025 and 51172031). Also, this work was financially supported by the Scientific Research Fund of Hunan Provincial Education Department (16B027) and Hunan Provincial Natural Science Foundation of China (2018JJ2456).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlin Chen or Difa Xu.

Supplementary Material

43578_2018_33101391_MOESM1_ESM.docx

Supplementary Material: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication (approximately 4.70 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, J., Xu, D. et al. Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. Journal of Materials Research 33, 1391–1400 (2018). https://doi.org/10.1557/jmr.2018.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.67

Navigation