Skip to main content

Advertisement

Log in

MOF-driven ultra-small hollow Co9S8 nanoparticles embedded in porous carbon for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Uniformly dispersed ultra-small hollow Co9S8 nanoparticles (<10 nm) (H-Co9S8@C) and solid Co9S8 nanoparticles (S-Co9S8@C) in porous carbon were fabricated separately by solvothermal and sulfur powder sulphurisation using Co-MOF-74 as the template. Owing to significant structural stability and uniform hollow structure of carbon-encapsulated Co9S8, the as-prepared H-Co9S8@C exhibited excellent lithium ion storage performance as an anode material. Worked in the voltage of 0.01–3.0 V, H-Co9S8@C revealed outstanding rate capability (850, 670, 613, 552, 457, and 347 mA h/g at 0.1, 0.2, 0.5, 1, 2, and 3 A/g, respectively), and high reversible capacity (after 250 cycles with a remained capacity of 900.5 mA h/g). Compared with S-Co9S8@C, over 50 cycles, the discharge specific capacity of H-Co9S8@C was still maintained at 655 mA h/g at a current density of 0.5 A/g, whereas the capacity of S-Co9S8@C declined rapidly to 160.4 mA h/g. The results showed that superior capacity, excellent rate performance, and highly stable cycle performance depended mainly on the hollow characteristic of Co9S8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. M.V. Reddy, G.V. Subba Rao, and B.V. Chowdari: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364 (2013).

    Article  CAS  Google Scholar 

  2. V. Etacheri, R. Marom, E. Ran, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).

    Article  CAS  Google Scholar 

  3. R. Wu, X. Qian, F. Yu, H. Liu, K. Zhou, J. Wei, and Y. Huang: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 1, 11126 (2013).

    Article  CAS  Google Scholar 

  4. G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C.C. Li, and H. Duan: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400 (2015).

    Article  CAS  Google Scholar 

  5. M.W. And and R.J. Brodd: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 105, 1021 (2005).

    Article  CAS  Google Scholar 

  6. F.F. Cao, J.W. Deng, S. Xin, H.X. Ji, O.G. Schmidt, L.J. Wan, and Y.G. Guo: Cu–Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 23, 4415 (2011).

    Article  CAS  Google Scholar 

  7. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  8. B. Dunn, H. Kamath, and J.M. Tarascon: Electrical energy storage for the grid: A battery of choices. Science 334, 928 (2011).

    Article  CAS  Google Scholar 

  9. X.Y. Yu, L. Yu, and X.W. Lou: Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Eng. Mater. 6, 1501333 (2016).

    Article  CAS  Google Scholar 

  10. Y. Lu and E. Fong: Biomass-mediated synthesis of carbon-supported nanostructured metal sulfides for ultra-high performance lithium-ion batteries. J. Mater. Chem. A 4, 2738 (2016).

    Article  CAS  Google Scholar 

  11. Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang, J. Yue, J. Yang, and Y. Qian: Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12, 528 (2015).

    Article  CAS  Google Scholar 

  12. L. Yu, J.F. Yang, and X.W. Lou: Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem. Int. Ed. 55, 13422 (2016).

    Article  CAS  Google Scholar 

  13. H. Wang, S. Lu, Y. Chen, L. Han, J. Zhou, X. Wu, and W. Qin: Graphene/CoS nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries. J. Mater. Chem. A 3, 23677 (2015).

    Article  CAS  Google Scholar 

  14. J. Zhang, L. Yu, and X.W.D. Lou: Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 10, 1 (2017).

    Article  CAS  Google Scholar 

  15. M. Lu, C. Liao, C. Jiang, Y. Du, Z. Zhang, and S. Wu: Remarkable high-temperature performance of hollow Co9S8 nanoparticles integrated with carbon materials for lithium-ion batteries. Electrochim. Acta 250, 196 (2017).

    Article  CAS  Google Scholar 

  16. J. Wang, S.H. Ng, G.X. Wang, J. Chen, L. Zhao, Y. Chen, and H.K. Liu: Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. J. Power Sources 159, 287 (2006).

    Article  CAS  Google Scholar 

  17. J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P.A. van Aken, J. Maier, and Y. Yu: MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 12, 2354 (2016).

    Article  CAS  Google Scholar 

  18. H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, and J. Lian: High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014).

    Article  CAS  Google Scholar 

  19. J. Zhou, X. Liu, W. Cai, Y. Zhu, J. Liang, K. Zhang, Y. Lan, Z. Jiang, G. Wang, and Y. Qian: Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater. 29, 1700214 (2017).

    Article  CAS  Google Scholar 

  20. S. Zhang, R. Lin, W. Yue, F. Niu, J. Ma, and X. Yang: Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries. Chem. Eng. J. 314, 19 (2017).

    Article  CAS  Google Scholar 

  21. J. Zhong, O.B. Chae, W. Shi, J. Fan, H. Mi, and S.M. Oh: Ultrathin NiO nanoflakes perpendicularly oriented on carbon nanotubes as lithium ion battery anode. J. Mater. Res. 28, 2577 (2013).

    Article  CAS  Google Scholar 

  22. L. Chen, F. Chen, N. Tronganh, M. Lu, Y. Jiang, Y. Gao, Z. Jiao, L. Cheng, and B. Zhao: MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery. J. Mater. Res. 31, 3151 (2016).

    Article  CAS  Google Scholar 

  23. Y. Wang, J. Xie, G. Cao, T. Zhu, and X. Zhao: Electrochemical performance of TiO2/carbon nanotubes nanocomposite prepared by an in situ route for Li-ion batteries. J. Mater. Res. 27, 417 (2012).

    Article  CAS  Google Scholar 

  24. X. Yao, G. Guo, Y. Zhao, Y. Zhang, S.Y. Tan, Y. Zeng, R. Zou, Q. Yan, and Y. Zhao: Synergistic effect of mesoporous Co3O4 nanowires confined by N-doped graphene aerogel for enhanced lithium storage. Small 12, 3849 (2016).

    Article  CAS  Google Scholar 

  25. D. Gu, W. Li, F. Wang, H. Bongard, B. Spliethoff, W. Schmidt, C. Weidenthaler, Y. Xia, D. Zhao, and F. Schüth: Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew. Chem. Int. Ed. 54, 7060 (2015).

    Article  CAS  Google Scholar 

  26. G. Xu, P. Nie, H. Dou, B. Ding, L. Li, and X. Zhang: A review of the latest developments in MOFs for energy storage in batteries and supercapacitors. Mater. Today 20, 191 (2017).

    Article  CAS  Google Scholar 

  27. J. Kim, C. Young, J. Lee, Y.U. Heo, M.S. Park, M.S.A. Hossain, Y. Yamauchi, and J.H. Kim: Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J. Mater. Chem. A 5, 15065 (2017).

    Article  CAS  Google Scholar 

  28. X. Deng, S. Zhu, J. Li, L. Ma, F. He, E. Liu, C. He, C. Shi, Q. Li, and N. Zhao: Ball-in-cage nanocomposites of metal-organic frameworks and three-dimensional carbon networks: Synthesis and capacitive performance. Nanoscale 9, 6478 (2017).

    Article  CAS  Google Scholar 

  29. B. Guo, Y. Yang, Z. Hu, Y. An, Q. Zhang, X. Yang, X. Wang, and H. Wu: Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor. Electrochim. Acta 223, 74 (2017).

    Article  CAS  Google Scholar 

  30. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang: Metal–organic frameworks for energy storage: Batteries and supercapacitors coordination. Chem. Rev. 307, 361 (2015).

    Google Scholar 

  31. A. Mahmood, W. Guo, H. Tabassum, and R. Zou: Metal—Organic framework—based nanomaterials for electrocatalysis. Adv. Eng. Mater. 6, 1600423 (2016).

    Article  CAS  Google Scholar 

  32. H.B. Wu and X.W. Lou: Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 3, 9252 (2017).

    Article  CAS  Google Scholar 

  33. R. Wu, D.P. Wang, X. Rui, B. Liu, K. Zhou, A.W.K. Law, Q. Yan, J. Wei, and Z. Chen: In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27, 3038 (2015).

    Article  CAS  Google Scholar 

  34. J. Mujtaba, H. Sun, G. Huang, Y. Zhao, H. Arandiyan, G. Sun, S. Xu, and J. Zhu: Co9S8 nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Adv. 6, 31775 (2016).

    Article  CAS  Google Scholar 

  35. H. Li, F. Yue, C. Yang, P. Qiu, P. Xue, Q. Xu, and J. Wang: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes. Ceram. Int. 42, 3121 (2016).

    Article  CAS  Google Scholar 

  36. H. Li, L. Chi, C. Yang, L. Zhang, F. Yue, and J. Wang: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31, 3069 (2016).

    Article  CAS  Google Scholar 

  37. H. Li, F. Yue, H. Xie, C. Yang, Y. Zhang, L. Zhang, and J. Wang: Hollow shell-in-shell Ni3S4@Co9S8 tubes derived from core–shell Ni-MOF-74@Co-MOF-74 as efficient faradaic electrodes. CrystEngComm 20, 889 (2018).

    Article  CAS  Google Scholar 

  38. Y. Yin, C.K. Erdonmez, A. Cabot, S. Hughes, and A.P. Alivisatos: Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv. Funct. Mater. 16, 1389 (2006).

    Article  CAS  Google Scholar 

  39. X. Fan, C. Yu, Z. Ling, J. Yang, and J. Qiu: Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance. ACS Appl. Mater. Interfaces 5, 2104 (2013).

    Article  CAS  Google Scholar 

  40. L. Yu, B.Y. Xia, X. Wang, and X.W. Lou: General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28, 92 (2016).

    Article  CAS  Google Scholar 

  41. Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, and L. Zheng: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604 (2015).

    Article  CAS  Google Scholar 

  42. N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, and Y. Yamauchi: Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10, 2096 (2014).

    Article  CAS  Google Scholar 

  43. G. Huang, T. Chen, Z. Wang, K. Chang, and W. Chen: Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery. J. Power Sources 235, 122 (2013).

    Article  CAS  Google Scholar 

  44. R. Ramachandran, M. Saranya, C. Santhosh, V. Velmurugan, B.P.C. Raghupathy, S.K. Jeong, and A.N. Grace: Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors. RSC Adv. 4, 21151 (2014).

    Article  CAS  Google Scholar 

  45. W. Kong, C. Lu, W. Zhang, J. Pu, and Z. Wang: Homogeneous core–shell NiCo2S4 nanostructure supported on nickel foam for supercapacitors. J. Mater. Chem. A 3, 12452 (2015).

    Article  CAS  Google Scholar 

  46. X. Wang, H. Xia, X. Wang, B. Shi, and Y. Fang: A super high performance asymmetric supercapacitor based on Co3S4/NiS nanoplates electrodes. RSC Adv. 6, 97482 (2016).

    Article  CAS  Google Scholar 

  47. C. Fang, H. Jia, S. Chang, Q. Ruan, P. Wang, T. Chen, and J. Wang: (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 7, 3431 (2014).

    Article  CAS  Google Scholar 

  48. A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, and P. Feng: From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Trans. 44, 6748 (2015).

    Article  CAS  Google Scholar 

  49. Z. Wang, L. Pan, H. Hu, and S. Zhao: Co9S8 nanotubes synthesized on the basis of nanoscale Kirkendall effect and their magnetic and electrochemical properties. CrystEngComm 12, 1899 (2010).

    Article  CAS  Google Scholar 

  50. H.K. Kim, D. Mhamane, M.S. Kim, H.K. Roh, V. Aravindan, S. Madhavi, K.C. Roh, and K.B. Kim: TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J. Power Sources 327, 171 (2016).

    Article  CAS  Google Scholar 

  51. F. Kokai, R. Sorin, H. Chigusa, K. Hanai, A. Koshio, M. Ishihara, Y. Koga, M. Hasegawa, N. Imanishi, and Y. Takeda: Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries. Diam. Relat. Mater. 29, 63 (2012).

    Article  CAS  Google Scholar 

  52. X. Meng and D. Deng: Trash to treasure: Waste eggshells used as reactor and template for synthesis of Co9S8 nanorod arrays on carbon fibers for energy storage. Chem. Mater. 28, 3897 (2016).

    Article  CAS  Google Scholar 

  53. Y. Zhou, D. Yan, H. Xu, S. Liu, J. Yang, and Y. Qian: Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: A high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale 7, 3520 (2015).

    Article  CAS  Google Scholar 

  54. C. Li, L. Gu, X. Guo, D. Samuelis, K. Tang, and J. Maier: Charge carrier accumulation in lithium fluoride thin films due to Li-ion absorption by titania (100) subsurface. Nano Lett. 12, 1241 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21261022) and the Regional Collaborative Innovation Project of Xinjiang Uyghur Autonomous Region (No. 2017E01005) and the University Scientific Research Project of Xinjiang Uyghur Autonomous Region (No. XJEDU2017I001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li or Jide Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, H., Xie, H. et al. MOF-driven ultra-small hollow Co9S8 nanoparticles embedded in porous carbon for lithium-ion batteries. Journal of Materials Research 33, 1496–1505 (2018). https://doi.org/10.1557/jmr.2018.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.59

Navigation