Skip to main content

Advertisement

Log in

Fe3O4 Hollow Nanospheres Grown In Situ in Three-Dimensional Honeycomb Macroporous Carbon Boost Long-Life and High-Rate Lithium Ion Storage

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A composite of Fe3O4 and carbon is constructed by a one-step calcination method with polystyrene spheres as template, polyvinyl pyrrolidone as assembling agent, and Fe(NO3)3 as Fe source. Material characterization demonstrates that Fe3O4 hollow nanospheres 10–16 nm in diameter are closely grown in situ inside three-dimensional honeycomb macroporous carbon with a pore diameter of about 200 nm. The composite material exhibits high specific capacity, delivering an average discharge capacity of 1618 mA h g−1 at 0.1 A g−1. The long-term cycling performance is excellent, achieving discharge capacity of 770 mA h g−1 at 1 A g−1 after 1000 cycles and 429 mA h g−1 at 5 A g−1 after 200 cycles. Even at 10 A g−1, the rate capability is outstanding. Kinetics analyses reveal predominant capacitive behavior and low reaction impedance in electrochemical reaction. The excellent performance mainly benefits from the beneficial structural effects of Fe3O4 hollow nanospheres and honeycomb macroporous carbon. Fe3O4 hollow nanospheres@three-dimensional honeycomb macroporous carbon is a superior anode material for lithium-ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.J. Yao, C. Cai, C.W. Li, J.C. Hou, J.Y. Zhang, L.X. He, Y.F. Yang, X.H. Xia, and J. Xiong, Novel construction of heterostructured FeTiO3/Fe2.75Ti0.25O4 mesoporous nanodisks with both high capacity and stable cycling life for lithium-ion storage. ACS Appl. Energ. Mater. 4, 10380–10390 (2021).

    Article  CAS  Google Scholar 

  2. L. Chen, Y.F. Yuan, M. Zhu, S.M. Yin, P.F. Du, and C.L. Mo, Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage. J. Colloid Interf. Sci. 627, 449–458 (2022).

    Article  CAS  Google Scholar 

  3. Q. Zhao, X. Chen, W. Hou, B.R. Ye, Y.Q. Zhang, X.H. Xia, and J.S. Wang, A facile, scalable, high stability lithium metal anode. SusMat. 2, 104–112 (2022).

    Article  Google Scholar 

  4. Z.F. Zhao, X.J. Teng, Q.Q. Xiong, H.Z. Chi, Y.J. Yuan, H.Y. Qin, and Z.G. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021).

    CAS  Google Scholar 

  5. L. Chen, L.L. Qiu, L.X. Song, Y.F. Yuan, J. Xiong, and P.F. Du, CuGaO2 nanosheets and CuCrO2 nanoparticles mixed with spiro-OMeTAD as the hole-transport layer in perovskite solar cells. ACS Appl. Nano Mater. 5, 7312–7320 (2022).

    Article  CAS  Google Scholar 

  6. C.H. Wang, Y.H. Li, F. Cao, Y.Q. Zhang, X.H. Xia, and L.J. Zhang, Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries. ACS Appl. Mater. Inter. 14, 10457–10466 (2022).

    Article  CAS  Google Scholar 

  7. Y.F. Yuan, J.P. Tu, S.Y. Guo, J.B. Wu, M. Ma, J.L. Yang, and X.L. Wang, Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process. Appl. Surf. Sci. 254, 5080–5084 (2008).

    Article  CAS  Google Scholar 

  8. B.Q. Wang, S.H. Gong, Q.S. Sun, F. Liu, X.C. Wang, and J.P. Cheng, Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high-performance supercapacitors. Electrochim. Acta 402, 139575 (2021).

    Article  Google Scholar 

  9. X.Y. Shan, Y. Zhong, L.J. Zhang, Y.Q. Zhang, X.H. Xia, X.L. Wang, and J.P. Tu, A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C. 125, 19060–19080 (2021).

    Article  Google Scholar 

  10. L. Mei, Z.L. Cao, T. Ying, R.J. Yang, H.R. Peng, G. Wang, L. Zheng, Y. Chen, C.Y. Tang, D. Voiry, H.H. Wang, A.B. Farimani, and Z.Y. Zeng, Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, 2201416 (2022).

    Article  CAS  Google Scholar 

  11. L. Huang, S.H. Shen, Y. Zhong, Y.Q. Zhang, L.J. Zhang, X.L. Wang, X.H. Xia, X.L. Tong, J.C. Zhou, and J.P. Tu, Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 34, 2107415 (2022).

    Article  CAS  Google Scholar 

  12. S.Y. Zhu, Y.F. Yuan, P.F. Du, C.L. Mo, G.C. Cai, B.X. Wang, and S.Y. Guo, Ultrasmall Mn3O4 nanocrystalline@three-dimensional macroporous honeycomb-like hollow carbon matrix for high-rate and long-lifetime zinc-ion storage. Electrochim. Acta 419, 140396 (2022).

    Article  CAS  Google Scholar 

  13. W.D. Wang, X.F. Li, P.P. Zhang, B.Q. Wang, S.H. Gong, X.C. Wang, F. Liu, and J.P. Cheng, Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. J. Electroanal. Chem. 891, 115257 (2021).

    Article  CAS  Google Scholar 

  14. R.J. Yang, L. Mei, Q.Y. Zhang, Y.Y. Fan, H.S. Shin, D. Voiry, and Z.Y. Zeng, High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).

    Article  CAS  Google Scholar 

  15. T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).

    Article  Google Scholar 

  16. B. Bai, L.L. Qiu, D.Q. Mei, Z.F. Jin, L.X. Song, and P.F. Du, Firmly-Supported Porous fabric fiber photocatalysts: TiO2/porous carbon fiber cloth composites and their photocatalytic activity. Mater. Res. Bull. 148, 111672 (2022).

    Article  CAS  Google Scholar 

  17. A.L. Yan, W.D. Wang, B.Q. Wang, X.C. Wang, and J.P. Cheng, Core-shell structured Co3O4@NiCo2O4 nanowires on nickel foam for supercapacitors. J. Electroanal. Chem. 907, 116061 (2022).

    Article  CAS  Google Scholar 

  18. Q.W. Chen, W. Zhong, J.N. Zhang, C.L. Gao, W.L. Liu, G.D. Li, and M.M. Ren, Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries. J. Alloy. Compd. 772, 557–564 (2019).

    Article  CAS  Google Scholar 

  19. X.S. Tao, Y. Li, H.G. Wang, X.L. Lv, Y.H. Li, D. Xu, Y. Jiang, and Y. Meng, Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J. Colloid Interf. Sci. 565, 494–502 (2020).

    Article  CAS  Google Scholar 

  20. J.L. Xu, X. Zhang, Y.X. Miao, M.X. Wen, W.J. Yan, P. Lu, Z.R. Wang, and Q. Sun, In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 546, 149163 (2021).

    Article  CAS  Google Scholar 

  21. D. Liu, C.F. Wang, K.J. Jeong, and J. Lee, Inner-conductivity optimized core-shell Ag@Fe3O4 nanospheres for high-performance lithium-/sodium-ion batteries. J. Alloy. Compd. 832, 152824 (2020).

    Article  CAS  Google Scholar 

  22. Z.J. Cao, and X.B. Ma, Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. J. Alloy. Compd. 815, 152542 (2020).

    Article  CAS  Google Scholar 

  23. R.R. Gao, S.Q. Wang, Z.X. Xu, H.B. Li, S.L. Chen, H.Q. Hou, and J.L. Wang, Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 864, 158796 (2021).

    Article  CAS  Google Scholar 

  24. Y.F. Yan, X.M. Lu, Y.X. Li, J. Song, Q.H. Tian, L. Yang, and Z.Y. Sui, Dispersive Fe3O4 encapsulated in porous carbon for high capacity and long life anode of lithium-ion batteries. J. Alloy. Compd. 899, 163342 (2022).

    Article  CAS  Google Scholar 

  25. Q.C. Wu, R.L. Jiang, and H.W. Liu, Carbon layer encapsulated Fe3O4@reduced graphene oxide lithium battery anodes with long cycle performance. Ceram. Int. 46, 12732–12739 (2020).

    Article  CAS  Google Scholar 

  26. H.H. Duan, S.K. Zhang, Z.W. Chen, A.D. Xu, S.Z. Zhan, and S.P. Wu, Self-Formed channel boosts ultrafast lithium ion storage in Fe3O4@nitrogen-doped carbon nanocapsule. ACS Appl. Mater. Interfaces 12, 527–537 (2020).

    Article  CAS  Google Scholar 

  27. X.F. Chen, X.Y. Zhu, G.P. Cao, S.T. Zhang, Y. Mu, H. Ming, and J.Y. Qiu, Fe3O4-based anodes with high conductivity and fast ion diffusivity designed for high-energy lithium-ion batteries. Energ. Fuel. 35, 1810–1819 (2021).

    Article  CAS  Google Scholar 

  28. D.F. He, M.F. Sun, D. Cao, G.Y. He, and H.Q. Chen, Rational design of nano-Fe3O4 encapsulated in 3D honeycomb biochar for enhanced lithium storage performance. Nanotechnology 33, 035401 (2021).

    Article  Google Scholar 

  29. J.R. Huang, Q.S. Dai, C.J. Cui, H.B. Ren, X.J. Lu, Y. Hong, and S.W. Joo, Cake-like porous Fe3O4@C nanocomposite as high-performance anode for li-ion battery. J. Electroanal. Chem. 918, 116508 (2022).

    Article  CAS  Google Scholar 

  30. S.L. Gu, and A.P. Zhu, Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. J. Alloy. Compd. 813, 152160 (2020).

    Article  CAS  Google Scholar 

  31. Y.H. Hou, H. Yuan, H. Chen, J. Shen, and L.C. Li, The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite. Ceram. Int. 43, 11505–11510 (2017).

    Article  CAS  Google Scholar 

  32. L. Zhao, M.M. Gao, W.B. Yue, Y. Jiang, Y. Wang, Y. Ren, and F.Q. Hu, Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Inter. 7, 9709–9715 (2015).

    Article  CAS  Google Scholar 

  33. S. Chauque, A.H. Braga, R.V. Goncalves, L.M. Rossi, and R.M. Torresi, Enhanced energy storage of Fe3O4 nanoparticles embedded in N-doped graphene. ChemElectroChem 7, 1456–1464 (2020).

    Article  CAS  Google Scholar 

  34. L.L. Xu, R.R. Jiao, X.Q. Tao, X.J. Yi, and D.H. Wei, One-step thermal decomposition of C4H4FeO6 to Fe3O4@Carbon nano-composite for high-performance lithium-ion batteries. Mater. Chem. Phys. 239, 122024 (2020).

    Article  CAS  Google Scholar 

  35. Q.C. Wu, R. Yu, Z.H. Zhou, H.W. Liu, and R.L. Jiang, Encapsulation of a core-shell porous Fe3O4@carbon material with reduced graphene oxide for Li+ battery anodes with long cyclability. Langmuir 37, 785–792 (2021).

    Article  CAS  Google Scholar 

  36. W.H. Han, Y. Xiao, J.P. Yin, Y.M. Gong, X.H. Tuo, and J.C. Cao, Fe3O4@carbon nanofibers synthesized from cellulose acetate and application in lithium-ion battery. Langmuir 36, 11237–11244 (2020).

    Article  CAS  Google Scholar 

  37. J. Song, Y.L. Ji, Y.X. Li, X.M. Lu, W.C. Ren, Q.H. Tian, J.Z. Chen, and L. Yang, Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceram. Int. 47, 26092–26099 (2021).

    Article  CAS  Google Scholar 

  38. Q.X. Yu, S. Ma, H.H. Zhou, J.W. Li, Z.Q. Wang, Z. Tan, L. Chen, Z.Y. Huang, C.P. Fu, and Y.F. Kuang, Partial self-sacrificing templates synthesis of sandwich-like mesoporous C-N@Fe3O4@C-N hollow spheres for high-performance Li-ion batteries. Int. J. Hydrog. Energ. 44, 1816–1826 (2019).

    Article  CAS  Google Scholar 

  39. S.P. Chen, Q.N. Wu, M. Wen, Q.S. Wu, J.Q. Li, Y. Cui, N. Pinna, Y.F. Fan, and T. Wu, Sea-sponge-like structure of nano-Fe3O4 on Skeleton-C with long cycle life under high rate for li-ion batteries. ACS Appl. Mater. Inter. 10, 19656–19663 (2018).

    Article  CAS  Google Scholar 

  40. Y. Liu, Y. Dai, X.B. Jiang, X.C. Li, Z.J. Yan, and G.H. He, Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries. Mater. Today Energy 12, 269–276 (2019).

    Article  Google Scholar 

  41. A.L. Bahadur, S.H. Iqbal, M.H. Shoaib, and A. Saeed, Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalton T. 47, 15031–15037 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Scientific Research Project of Education Department of Zhejiang Province (No. Y202145998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Yuan.

Ethics declarations

Conflict of interest

There is no conflict of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zheng, H., Jin, X. et al. Fe3O4 Hollow Nanospheres Grown In Situ in Three-Dimensional Honeycomb Macroporous Carbon Boost Long-Life and High-Rate Lithium Ion Storage. J. Electron. Mater. 52, 10–22 (2023). https://doi.org/10.1007/s11664-022-10026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10026-w

Keywords

Navigation