Skip to main content
Log in

Comparative evaluation of hot corrosion resistance of nanostructured AlCrN and TiAlN coatings on cobalt-based superalloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molten vanadate-induced hot corrosion is the major cause of failure of superalloys which are generally used at higher temperatures (such as in internal combustion engines, gas turbines, high temperature tooling and dies, and petrochemical industries and marines). This effect can be minimized by applying thermally stable coatings over the superalloy. In this aspect, the current work investigates the effect of nanostructured aluminum chromium nitride (AlCrN) and titanium aluminum nitride (TiAlN) coatings on the hot corrosion behavior of Co-based superalloy, Superco-605, in an aggressive environment of Na2SO4–60% V2O5 (ratio by weight) at 700 °C up to 80 cycles. Each cycle consisted of 1 h heating at 700 °C followed by 20 min cooling in an ambient temperature. Hot corrosion kinetics was studied using the thermogravimetric technique and found to follow the parabolic rate law. The corrosion surface morphology and phases formed during hot corrosion were studied using field emission scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction techniques. It was found that AlCrN coating had a better hot corrosion resistance than TiAlN coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G. Goyal, H. Singh, and S. Prakash: Effect of superficially applied ZrO2 inhibitor on the high temperature corrosion performance of some Fe-, Co- and Ni-base superalloys. Appl. Surf. Sci. 254, 6653 (2008).

    Article  CAS  Google Scholar 

  2. G.W. Goward: Protective coatings—Purpose, role, and design. Mater. Sci. Technol. 2, 194 (1986).

    Article  CAS  Google Scholar 

  3. F. Pettit, C. Giggins, C. Sims, N. Stollof, and W. Hagel: Hot corrosion, Ch. 12. In Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds. (John Wiley & Sons, Ann Arbor, Michigan, 1987), pp. 327–358.

    Google Scholar 

  4. R.A. Rapp and Y-S. Zhang: Hot corrosion of materials: Fundamental studies. JOM 46, 47 (1994).

    Article  CAS  Google Scholar 

  5. T.S. Sidhu, R.D. Agrawal, and S. Prakash: Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review. Surf. Coat. Technol. 198, 441 (2005).

    Article  CAS  Google Scholar 

  6. T.S. Sidhu, S. Prakash, and R.D. Agrawal: Hot corrosion performance of a NiCr coated Ni-based alloy. Scr. Mater. 55, 179 (2006).

    Article  CAS  Google Scholar 

  7. M. Yoshiba: Effect of hot corrosion on the mechanical performances of superalloys and coating systems. Corros. Sci. 35, 1115 (1993).

    Article  CAS  Google Scholar 

  8. M. Yoshiba, K. Abe, T. Aranami, and Y. Harada: High-temperature oxidation and hot corrosion behavior of two kinds of thermal barrier coating systems for advanced gas turbines. J. Therm. Spray Technol. 5, 259 (1996).

    Article  CAS  Google Scholar 

  9. N. Eliaz, G. Shemesh, and R.M. Latanision: Hot corrosion in gas turbine components. Eng. Fail. Anal. 9, 31 (2002).

    Article  CAS  Google Scholar 

  10. S. Bose: High Temperature Coatings (Elsevier Science, Cambridge, Massachusetts, 2011).

    Google Scholar 

  11. T. Sidhu, S. Prakash, and R. Agrawal: Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J. Therm. Spray Technol. 15, 387 (2006).

    Article  CAS  Google Scholar 

  12. N. Jegadeeswaran, K. Udaya Bhat, and M.R. Ramesh: Improving hot corrosion resistance of cobalt based superalloy (Superco-605) using HVOF sprayed oxide alloy powder coating. Trans. Indian Inst. Met. 68, 309 (2015).

    Article  Google Scholar 

  13. T.S. Sidhu, S. Prakash, and R.D. Agrawal: A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite-6 coated Ni-based superalloy at 900 °C. Mater. Sci. Eng., A 445, 210 (2007).

    Article  CAS  Google Scholar 

  14. J-H. Lee, P-C. Tsai, and J-W. Lee: Cyclic oxidation behavior and microstructure evolution of aluminized, Pt-aluminized high velocity oxygen fuel sprayed CoNiCrAlY coatings. Thin Solid Films 517, 5253 (2009).

    Article  CAS  Google Scholar 

  15. W. Gao and Z. Li: Nano-structured alloy and composite coatings for high temperature applications. Mater. Res. 7, 175 (2004).

    Article  CAS  Google Scholar 

  16. P. Vincenzini: Zirconia thermal barrier coatings for engine applications. Ind. Ceram. 10, 113 (1990).

    Google Scholar 

  17. O. Knotek, M. Atzor, A. Barimani, and F. Jungblut: Development of low temperature ternary coatings for high wear resistance. Surf. Coat. Technol. 42, 21 (1990).

    Article  CAS  Google Scholar 

  18. H. Hasegawa and T. Suzuki: Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method. Surf. Coat. Technol. 188, 234 (2004).

    Article  CAS  Google Scholar 

  19. A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, and B. Sartory: Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 200, 2114 (2005).

    Article  CAS  Google Scholar 

  20. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster: Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int. J. Refract. Met. Hard Mater. 17, 163 (1999).

    Article  CAS  Google Scholar 

  21. M. Kawate, A. Kimura Hashimoto, and T. Suzuki: Oxidation resistance of Cr1−xAlxN and Ti1−xAlxN films. Surf. Coat. Technol. 165, 163 (2003).

    Article  CAS  Google Scholar 

  22. D. Deb, S.R. Iyer, and V.M. Radhakrishnan: A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments. Mater. Lett. 29, 19 (1996).

    Article  CAS  Google Scholar 

  23. E. Rocca, P. Steinmetz, and M. Moliere: Revisiting the inhibition of vanadium-induced hot corrosion in gas turbines. ASME. J. Eng. Gas Turbines Power 125, 664 (2003).

    Article  CAS  Google Scholar 

  24. B.M. Strauss and S.K. Putatunda: Quantitative methods in fractography. In Proceedings of the Symposium on Evaluation and Techniques in Fractography, 10 Nov 1988 (ASTM, Atlanta, GA, 1990).

    Google Scholar 

  25. J. Stringer: High temperature corrosion in practical systems. J. Phys. IV 3, 43 (1993).

    CAS  Google Scholar 

  26. I.G. Wright and T.B. Gibbons: Recent developments in gas turbine materials and technology and their implications for syngas firing. Int. J. Hydrogen Energy 32, 3610 (2007).

    Article  CAS  Google Scholar 

  27. K.J. Stein, B.S. Schorr, and A.R. Marder: Erosion of thermal spray MCr–Cr3C2 cermet coatings. Wear 224, 153 (1999).

    Article  CAS  Google Scholar 

  28. V. Higuera Hidalgo, J. Belzunce Varela, A. Carriles Menéndez, and S. Poveda Martínez: High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247, 214 (2001).

    Article  Google Scholar 

  29. S. Prakash, D. Puri, and H. Singh: Hot corrosion behaviour of plasma sprayed coatings on a Ni-based superalloy in Na2SO4–60% V2O5 environment. ISIJ Int. 45, 886 (2005).

    Article  CAS  Google Scholar 

  30. S.N. Tewari: Investigation of hot corrosion on some Fe, Ni and Co based superalloy in Na2SO4-V2O5 environment under cyclic conditions. Ph.D. thesis, University of Roorkee, India, 1997.

  31. Gitanjaly, S. Prakash, and S. Singh: Effects of MgO and CaO on hot corrosion of Fe base superalloy Superfer 800H in Na2SO4–60% V2O5 environment. Br. Corros. J. 37, 56 (2002).

    Article  CAS  Google Scholar 

  32. T.S. Sidhu, S. Prakash, and R.D. Agrawal: Performance of high-velocity oxyfuel-sprayed coatings on an Fe-based superalloy in Na2SO4–60% V2O5 environment at 900 °C Part I: Characterization of the coatings. J. Mater. Eng. Perform. 15, 122 (2006).

    Article  CAS  Google Scholar 

  33. T.S. Sidhu, S. Prakash, and R.D. Agrawal: Performance of high-velocity oxyfuel-sprayed coatings on an Fe-based superalloy in Na2SO4–60% V2O5 environment at 900 °C part II: Hot corrosion behavior of the coatings. J. Mater. Eng. Perform. 15, 130 (2006).

    Article  CAS  Google Scholar 

  34. S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar: Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60%V2O5 environment at 900 °C. J. Alloys Compd. 463, 358 (2008).

    Article  CAS  Google Scholar 

  35. Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang: Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 517, 4845 (2009).

    Article  CAS  Google Scholar 

  36. V. Chawla, A. Chawla, Y. Mehta, D. Puri, S. Prakash, and B.S. Sidhu: Investigation of properties and corrosion behaviour of hard TiAlN and AlCrN PVD thin coatings in the 3 wt% NaCl solution. J. Aust. Ceram. Soc. 47, 48 (2011).

    CAS  Google Scholar 

  37. D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, and S. Prakash: High temperature corrosion behaviour of superalloys under actual waste incinerator environment. Eng. Fail. Anal. 63, 160 (2016).

    Article  CAS  Google Scholar 

  38. D. Mudgal, L. Ahuja, S. Singh, and S. Prakash: Evaluation of corrosion performance of Superni 600 hung in secondary chamber of medical waste incinerator operating at 1050 °C. Mater. High Temp. 34, 45 (2017).

    Article  CAS  Google Scholar 

  39. M.H. Hurdus, L. Tomlinson, and J.M. Titchmarsh: Observation of oscillating reaction rates during the isothermal oxidation of ferritic steels. Oxid. Met. 34, 429 (1990).

    Article  CAS  Google Scholar 

  40. S.E. Sadique, A.H. Mollah, M.S. Islam, M.M. Ali, M.H.H. Megat, and S. Basri: High-temperature oxidation behavior of iron–chromium–aluminum alloys. Oxid. Met. 54, 385 (2000).

    Article  CAS  Google Scholar 

  41. H. Choi, B. Yoon, H. Kim, and C. Lee: Isothermal oxidation of air plasma spray NiCrAlY bond coatings. Surf. Coat. Technol. 150, 297 (2002).

    Article  CAS  Google Scholar 

  42. Q.M. Wang, Y.N. Wu, P.L. Ke, H.T. Cao, J. Gong, C. Sun, and L.S. Wen: Hot corrosion behavior of AIP NiCoCrAlY(SiB) coatings on nickel base superalloys. Surf. Coat. Technol. 186, 389 (2004).

    Article  CAS  Google Scholar 

  43. L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen: High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53, 2027 (2011).

    Article  CAS  Google Scholar 

  44. M. Hebsur and R. Miner: High temperature isothermal and cyclic oxidation behavior of a single crystal Ni base superalloy. J. Mater. Energy Syst. 8, 363 (1987).

    Article  Google Scholar 

  45. R.A. Mahesh, R. Jayaganthan, and S. Prakash: A study on hot corrosion behaviour of Ni–5Al coatings on Ni- and Fe-based superalloys in an aggressive environment at 900 °C. J. Alloys Compd. 460, 220 (2008).

    Article  CAS  Google Scholar 

  46. H. Singh, D. Puri, and S. Prakash: Corrosion behavior of plasma-sprayed coatings on a Ni-base superalloy in Na2SO4–60% V2O5 environment at 900 °C. Metall. Mater. Trans. A 36, 1007 (2005).

    Article  Google Scholar 

  47. S. Tiwari and S. Prakash: Hot corrosion behaviour of an iron-base superalloy in salt environment at elevated temperatures. In Proceedings of Symposium Metals and Materials Research (Indian Institute of Technology Madras, Madras, 1996); p. 4.

    Google Scholar 

  48. G.C. Fryburg, F.J. Kohl, C.A. Stearns, and W.L. Fielder: Chemical reactions involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA. J. Electrochem. Soc. 129, 571 (1982).

    Article  CAS  Google Scholar 

  49. M. Seiersten and P. Kofstad: The effect of SO3 on vanadate-induced hot corrosion. High Temp. Technol. 5, 115 (1987).

    Article  CAS  Google Scholar 

  50. S. Kamal, R. Jayaganthan, and S. Prakash: Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25%NiCr coatings on nickel- and iron-based superalloys. Surf. Coat. Technol. 203, 1004 (2009).

    Article  CAS  Google Scholar 

  51. G. Heath, P. Heimgartner, G. Irons, R.D. Miller, and S. Gustafsson: An assessment of thermal spray coating technologies for high temperature corrosion protection. Mater. Sci. Forum 251, 809 (1997).

    Article  Google Scholar 

  52. H. Singh, D. Puri, and S. Prakash: High temperature oxidation behaviour of plasma sprayed NiCrAlY coatings on Ni-based superalloys in air. Trans. Indian Inst. Met. 59, 215 (2005).

    Google Scholar 

  53. X-z. Ding, A. Tan, X. Zeng, C. Wang, T. Yue, and C. Sun: Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 516, 5716 (2008).

    Article  CAS  Google Scholar 

  54. F. Almeraya-Calderon, A. Martinez-Villafañe, and J. Gonzalez-Rodriguez: Electrochemical studies of hot corrosion of type 347H stainless steel. Br. Corros. J. 33, 288 (1998).

    Article  CAS  Google Scholar 

  55. C. Cuevas-Arteaga, J. Uruchurtu-Chavarín, J. Porcayo-Calderon, G. Izquierdo-Montalvo, and J. Gonzalez: Study of molten salt corrosion of HK-40 m alloy applying linear polarization resistance and conventional weight loss techniques. Corros. Sci. 46, 2663 (2004).

    Article  CAS  Google Scholar 

  56. S-H. Cho, J-M. Hur, C-S. Seo, J-S. Yoon, and S-W. Park: Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidizing atmosphere. J. Alloys Compd. 468, 263 (2009).

    Article  CAS  Google Scholar 

  57. G.A. Kolta, I.F. Hewaidy, and N.S. Felix: Reactions between sodium sulphate and vanadium pentoxide. Thermochim. Acta 4, 151 (1972).

    Article  CAS  Google Scholar 

  58. E. Otero, M. Merino, A. Pardo, M. Biezma, and G. Buitrago: Study on corrosion products of IN 657 alloy in molten salts. Key Eng. Mater. 20, 3583 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghubeer Singh Bangari, Sandeep Sahu or Prabhat Chand Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangari, R.S., Sahu, S. & Yadav, P.C. Comparative evaluation of hot corrosion resistance of nanostructured AlCrN and TiAlN coatings on cobalt-based superalloys. Journal of Materials Research 33, 1023–1031 (2018). https://doi.org/10.1557/jmr.2018.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.53

Navigation