Skip to main content
Log in

Improving Hot Corrosion Resistance of Cobalt Based Superalloy (Superco-605) Using HVOF Sprayed Oxide Alloy Powder Coating

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Superco-605 is a cobalt based superalloy used widely in the hot section of gas turbines. During their operation, they are exposed to high temperature and molten salt environment, causing damage to the component due to hot corrosion. In this investigation, Superco-605 alloy was coated using a fused oxide alloy powder, \( 10\,\% {\text{Al}}_{ 2} {\text{O}}_{ 3} + {\text{CoCrAlTaY}} \) , using high velocity oxy-fuel process. Coating thickness was in the range of 260–280 µm and it was lamellar in nature. Uncoated and coated samples were subjected to cyclic hot corrosion tests at 800 °C in presence of molten salt environment of \( {\text{Na}}_{ 2} {\text{SO}}_{ 4}{+}50\% {\text{V}}_{ 2} {\text{O}}_{ 5} \). Resistance to hot corrosion was investigated using thermogravimetric analysis, visual observations, X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Both samples developed an oxide scale at the top. The uncoated Superco-605 exhibited intense spalling during hot corrosion cycles. The oxide scale on the coated substrate was thin compared to total thickness of the coating. There was a chromium depleted region close to the oxide top scale. An alumina rich layer at the interface of coating-substrate prevents penetration of oxygen into the substrate material. Based on the experimental results, it is concluded that the fused oxide alloy powder is effective in reducing hot corrosion tendency of Superco-605 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goyal G, Singh H, and Prakash S, Appl Surf Sci 254 (2008) 6653.

    Article  Google Scholar 

  2. Choudhury S D, and Bhakta U C, R&D J 1–2 (1996) 41.

    Google Scholar 

  3. Bettge D, Osterle W, and Ziebs J, Z Metalkd 86 (1995)190.

    Google Scholar 

  4. Kamal S, Jayaganthan R, and Prakash S, Bull Mater Sci 33 (2010) 299.

    Article  Google Scholar 

  5. Deb D, Ramakrishna Iyer S, and Radhakrishnan V M A, Mater lett 29 (1996) 19.

    Article  Google Scholar 

  6. Rocca E, Steinmetz P, and Moliere M, Trans ASME 125 (2003) 664.

    Article  Google Scholar 

  7. Wright I G, and Gibbons T.B, Int J Hydrogen Energy 32 (2007) 3610.

    Article  Google Scholar 

  8. Stein K J, Schorr B S, and Marder A R, Wear 224 (1999) 153.

    Article  Google Scholar 

  9. Hidalgo V H, Verela J B, Menendez A C, and Martinez S P, Wear 247 (2001) 214.

    Article  Google Scholar 

  10. Sidhu T S, Prakash S, and Agrawal R D, JTTEES, 15 (2006) 387.

    Google Scholar 

  11. Xie D, and Wang F, J Mater Sci Technol 19 (2003) 567.

    Google Scholar 

  12. Sidhu T S, Prakash S, and Agrawal R D, Mater Sci Eng A 445-446 (2007) 210.

    Article  Google Scholar 

  13. Lee J-H, Tsai P-C, and Lee J-W, Thin Solid Films 517 (2009) 5253.

    Article  Google Scholar 

  14. Nicholls J R, and Stephenson D J, Surf Engg 22 (1991) 156.

    Google Scholar 

  15. Sidhu T S, Agrawal R D, and Prakash S, Surf Coat Technol 198 (2005) 441.

    Article  Google Scholar 

  16. Mobarra R, Jafari A H, and Karaminezhaad M, Surf Coat Technol 201 (2006) 2202.

    Article  Google Scholar 

  17. Lasota S, Formanck B, Hernas A, and Szymanskai K, J Mater Process Technol 164–165 (2005) 935.

    Article  Google Scholar 

  18. Pint B A, Garratt-Reed A J, and Hobbs W, Mater High Temp 13 (1995) 3.

    Google Scholar 

  19. Eliaz N, Shemesh G, and Latanision R M, Eng Fail Anal 9 (2002) 31.

    Article  Google Scholar 

  20. Donachie M J, and Donachie S J, Superalloys-a technical guide, Materials part, 2nd ed, ASM Intl, Amsterdam (2002) 297.

  21. Kamal S, Jayaganthan R, and Prakash S, Surf Coat Technol 203 (2009) 1004.

    Article  Google Scholar 

  22. Rapp R A, and Zhang Y S, JOM 46 (1994) 47.

    Article  Google Scholar 

  23. Otsuka N, and Rapp R A, J Electrochem Soc 137 (1990) 46.

    Article  Google Scholar 

  24. Formanck B, Cizner J, Szczucka-Lasota B, and Przeliorz R, J Achiev Mater Manuf Eng 16 (2006) 46.

  25. Tao K, Zhou X-L, Cui, H, and Zhang J-S, Trans Nonferrous Met Soc China 19 (2009) 1151.

    Article  Google Scholar 

  26. Deshpande S, J Surf Eng MaterAdv Technol 3 (2013) 116.

    Google Scholar 

  27. Gao W, and Li Z (eds) Developments in high temperature corrosion and protection of materials, Woodhead Publ, CRC Press, Abington (2008) 186.

  28. Hindawi H M, and Whittle D P, J Mater Sci 18 (1983) 1389.

    Article  Google Scholar 

  29. Pint B A, Garratt-Reed A J, and Hobbs L W, J Am Ceram Soc 81 (1998) 305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jegadeeswaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jegadeeswaran, N., Udaya Bhat, K. & Ramesh, M.R. Improving Hot Corrosion Resistance of Cobalt Based Superalloy (Superco-605) Using HVOF Sprayed Oxide Alloy Powder Coating. Trans Indian Inst Met 68 (Suppl 2), 309–316 (2015). https://doi.org/10.1007/s12666-015-0605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0605-x

Keywords

Navigation