Skip to main content
Log in

Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The excessive use of plastic, especially polystyrene (PS), has caused serious environmental pollution. The efficient utilization of plastics and the conversion of plastics into value-added carbon materials are the concerns of researchers. Herein, we propose novel “pyrolysis–deposition” method to convert one popular plastic substance, PS, into ordered mesoporous carbons (OMCs). During the synthesis process, PS is pyrolyzed into small organic gases under high temperature, which is then adsorbed through capillary adsorption into the mesoporous of SBA-15 in the presence of catalyst. The obtained OMCs have high specific surface area, uniform pore size, and ordered pore structure. The OMCs exhibit specific capacitance of 118 F/g at a current density of 0.2 A/g and electrochemical stability of 87.2% at a current density of 2 A/g after 5000 cycles. The pyrolysis–deposition strategy provides a new idea to convert waste plastics into high-performance carbon materials for electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. C.Q. Wang, H. Wang, G.H. Gu, Q.Q. Lin, L.L. Zhang, L.L. Huang, and J.Y. Zhao: Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag. 51, 13 (2016).

    Article  CAS  Google Scholar 

  2. Q.B. Zhang, Z.C. Liu, B.T. Zhao, Y. Cheng, L. Zhang, H.H. Wu, M.S. Wang, S.G. Dai, K.L. Zhang, D. Ding, Y.P. Wu, and M.L. Liu: Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 16, 632 (2019).

    Article  Google Scholar 

  3. Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, H. Xiang, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries. Energy Environ. Sci. 11, 669 (2018).

    Article  CAS  Google Scholar 

  4. B.G. Kwon, K. Koizumi, S.Y. Chung, Y. Kodera, J. Kim, and K. Saido: Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J. Hazard. Mater. 300, 359 (2015).

    Article  CAS  Google Scholar 

  5. Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng: Fabrication and understanding of Cu3Si–Si@carbon@graphene nanocomposites as high-performance anode for lithium-ion batteries. Nanoscale 10, 22203 (2018).

    Article  CAS  Google Scholar 

  6. R. Miandad, M.A. Barakat, A.S. Aburiazaiza, M. Rehan, I.M.I. Ismail, and A.S. Nizami: Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 119, 239 (2017).

    Article  CAS  Google Scholar 

  7. R. Miandad, A.S. Nizami, M. Rehan, M.A. Barakat, M.I. Khan, A. Mustafa, I.M.I. Ismail, and J.D. Murphy: Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 58, 250 (2016).

    Article  CAS  Google Scholar 

  8. X.T. Fu, M.M. Ding, C.Y. Tang, B. Li, Z.Y. Zhao, D.Q. Chen, Q. Zhang, Q. Fu, H. Long, and T.W. Tan: Toughening of recycled polystyrene used for TV backset. J. Appl. Polym. Sci. 109, 3725 (2010).

    Article  CAS  Google Scholar 

  9. R. Miandad, M. Rehan, A-S. Nizami, M.A. El-Fetouh Barakat, and I.M. Ismail: The energy and value-added products from pyrolysis of waste plastics. In Recycling of Solid Waste for Biofuels and Bio-chemicals, O. Karthikeyan, K. Heimann, and S. Muthu, eds. (Springer, Singapore, 2016); pp. 333–355.

    Chapter  Google Scholar 

  10. Y. Li, J.F. Chen, Q. Xu, L.H. He, and Z.M. Chen: Controllable route to solid and hollow monodisperse carbon nanospheres. J. Phys. Chem. C 113, 10085 (2009).

    Article  CAS  Google Scholar 

  11. Z.J. Wu, L.J. Kong, H. Hu, S.H. Tian, and Y. Xiong: Adsorption performance of hollow spherical sludge carbon prepared from sewage sludge and polystyrene foam wastes. ACS Sustainable Chem. Eng. 3, 552 (2015).

    Article  CAS  Google Scholar 

  12. A.B. Chen, Y.T. Li, Y.F. Yu, Y.Q. Li, K.C. Xia, Y.Y. Wang, S.H. Li, and L.S. Zhang: Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103, 157 (2016).

    Article  CAS  Google Scholar 

  13. Q. Shi, R.Y. Zhang, Y.Y. Lv, Y.H. Deng, A.A. Elzatahrya, and D.Y. Zhao: Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84, 335 (2015).

    Article  CAS  Google Scholar 

  14. C.H. You, S.J. Liao, X.C. Qiao, X.Y. Zeng, F.F. Liu, R.P. Zheng, H.Y. Song, J.H. Zeng, and Y.W. Li: Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. J. Mater. Chem. A 2, 12240 (2014).

    Article  CAS  Google Scholar 

  15. J. Zheng, K. Wang, Y.R. Liang, F. Zhu, D.C. Wu, and G.F. Ouyang: Applications of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Chem. Commun. 52, 6829 (2016).

    Article  CAS  Google Scholar 

  16. J. Goscianska, M. Marciniak, and R. Pietrzak: Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chem. Eng. J. 247, 258 (2014).

    Article  CAS  Google Scholar 

  17. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828 (2011).

    Article  CAS  Google Scholar 

  18. J. Zhou, L. Bao, S.J. Wu, W. Yang, and H. Wang: Nitrogen-doped ordered mesoporous carbon using task-specific ionic liquid as a dopant for high-performance supercapacitors. J. Mater. Res. 32, 404 (2017).

    Article  CAS  Google Scholar 

  19. L.L. Zhang and X.S. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  20. E. Lim, C. Jo, and J. Lee: Applications of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Nanoscale 8, 7827 (2016).

    Article  CAS  Google Scholar 

  21. W. Luo, T. Zhao, Y.H. Li, J. Wei, P.C. Xu, X.X. Li, Y.W. Wang, W.Q. Zhang, A.A. Elzatahry, A. Alghamdi, Y.H. Deng, L.J. Wang, W. Jiang, Y. Liu, B. Kong, and D.Y. Zhao: A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultra-sensitive ammonia sensing. J. Am. Chem. Soc. 138, 12586 (2016).

    Article  CAS  Google Scholar 

  22. S.J. Li, A. Pasc, V. Fierro, and A. Celzard: Hollow carbon spheres, synthesis and applications—A review. J. Mater. Chem. A 4, 12686 (2016).

    Article  CAS  Google Scholar 

  23. X.F. Chu, H. Wang, Y.D. Chi, C. Wang, L. Lei, W.T. Zhang, and X.T. Yang: Hard-template-engaged formation of Co2V2O7 hollow prisms for lithium ion batteries. RSC Adv. 8, 2072 (2018).

    Article  CAS  Google Scholar 

  24. G.X. Wang, R.C. Wang, L. Liu, H.L. Zhang, J. Du, Y.T. Zhang, M. Liu, K.H. Liang, and A.B. Chen: Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor. Mater. Lett. 197, 71 (2017).

    Article  CAS  Google Scholar 

  25. Y.D. Xia and R. Mokaya: Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem. Mater. 17, 1553 (2005).

    Article  CAS  Google Scholar 

  26. L. Liu, H.L. Zhang, G.X. Wang, J. Du, Y.T. Zhang, X.Y. Fu, and A.B. Chen: Synthesis of mesoporous carbon nanospheres via “pyrolysis-deposition” strategy for CO2 capture. J. Mater. Sci. 52, 9640 (2017).

    Article  CAS  Google Scholar 

  27. J. Gong, J. Liu, X.C. Che, X. Wen, Z.W. Jiang, E. Mijowska, Y.H. Wang, and T. Tang: Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene. Microporous Mesoporous Mater. 176, 31 (2013).

    Article  CAS  Google Scholar 

  28. A. Maetz, L. Delmotte, G. Moussa, J. Denzer, S. Knopf, and C.M. Ghimbeu: Facile synthesis of nitrogen-doped polymer and carbon porous spheres. Green Chem. 19, 2266 (2017).

    Article  CAS  Google Scholar 

  29. X. Liu, L. Li, X.Y. Song, F.S. Liu, S.T. Yu, and X.P. Ge: Degradation of polystyrene using base modified mesoporous molecular sieves K2O/BaO-SBA-15 as catalysts. Catal. Lett. 146, 1 (2016).

    Article  CAS  Google Scholar 

  30. Z.M. Zheng, Y. Zao, Q.B. Zhang, Y. Cheng, H.X. Chen, K.L. Zhang, M.S. Wang, and D.L. Peng: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chem. Eng. J. 347, 563 (2018).

    Article  CAS  Google Scholar 

  31. U. Suryavanshi, A.V. Baskar, V.V. Balasubramanian, S.S. Al-Deyab, A. Al-Enizi, and A. Vinu: Growth and physico-chemical properties of interconnected carbon nanotubes in FeSBA-15 mesoporous molecular sieves. Arabian J. Chem. 9, 171 (2016).

    Article  CAS  Google Scholar 

  32. H.J. Huang, Q. Wang, Q.L. Wei, and Y.M. Huang: Nitrogen doped mesoporous carbon derived from copolymer and supporting cobalt oxide for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 40, 6072 (2015).

    Article  CAS  Google Scholar 

  33. G.P. Mane, S.N. Talapaneni, C. Anand, S. Varghese, H. Iwai, Q.M. Ji, K. Ariga, T. Mori, and A. Vinu: Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater. 22, 3596 (2012).

    Article  CAS  Google Scholar 

  34. A.B. Chen, Y.F. Yu, R.J. Wang, Y.H. Yu, W.W. Zang, P. Tang, and D. Ma: Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale 7, 14684 (2015).

    Article  CAS  Google Scholar 

  35. R. Ragavan and A. Pandurangan: Facile synthesis and supercapacitor performances of nitrogen doped CNT grown over mesoporous Fe/SBA-15 catalyst. New J. Chem. 41, 11591 (2017).

    Article  CAS  Google Scholar 

  36. A. Martín, G. Morales, F. Martínez, R.V. Grieken, L. Cao, and M. Kruk: Acid hybrid catalysts from poly(styrenesulfonic acid) grafted onto ultra-large-pore SBA-15 silica using atom transfer radical polymerization. J. Mater. Chem. 20, 8026 (2010).

    Article  CAS  Google Scholar 

  37. H.H. Wan, L. Liu, C.M. Li, X.Y. Xue, and X.M. Liang: Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography. J. Colloid Interface Sci. 337, 420 (2009).

    Article  CAS  Google Scholar 

  38. A.R. Martins, I.T. Cunha, A.A.S. Oliveira, and F.C.C. Moura: Highly ordered spherical SBA-15 catalysts for the removal of contaminants from the oil industry. Chem. Eng. J. 318, 189 (2017).

    Article  CAS  Google Scholar 

  39. N. Cakiryilmaz, H. Arbag, N. Oktar, G. Dogu, and T. Dogu: Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst. Int. J. Hydrogen Energy 43, 3629 (2018).

    Article  CAS  Google Scholar 

  40. M. Cakici, K.R. Reddy, and F. Alonso-Marroquin: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151 (2017).

    Article  CAS  Google Scholar 

  41. A. Rose, K.G. Prasad, T. Sakthivel, V. Gunasekaran, T. Maiyalagan, and T. Vijayakumar: Electrochemical analysis of graphene oxide/polyaniline/polyvinylalcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 449, 551 (2018).

    Article  CAS  Google Scholar 

  42. X.H. Liu, L. Zhou, Y.Q. Zhao, L. Bian, X.T. Feng, and Q.S. Pu: Hollow spherical nitrogen-rich porous carbon shells obtained from porous organic framework for the supercapacitor. ACS Appl. Mater. Interfaces 5, 10280 (2013).

    Article  CAS  Google Scholar 

  43. P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu, and Z. Lei: Biomass-derived carbon fiber aerogel as binder-free electrode for high-rate supercapacitor. J. Phys. Chem. C 120, 2079 (2016).

    Article  CAS  Google Scholar 

  44. A.B. Chen, K.C. Xia, L.S. Zhang, Y.F. Yu, Y.T. Li, H.X. Sun, Y.Y. Wang, Y.Q. Li, and S.H. Li: Fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules for supercapacitors. Langmuir 32, 8934 (2016).

    Article  CAS  Google Scholar 

  45. X.Y. Chen, C. Chen, Z.J. Zhang, H.X. Dong, D. Xiao, and W.L. Jian: Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 230, 50 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21676070), Hebei Natural Science Foundation (Grant No. B2015208109), Hebei Training Program for Talent Project (Grant No. A201500117), Hebei One Hundred-Excellent Innovative Talent Program (III) (SLRC2017034), Hebei Science and Technology Project (Grant Nos. 17214304D and 16214510D), and Beijing National Laboratory for Molecular Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Liu, L., Wang, W. et al. Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications. Journal of Materials Research 34, 941–949 (2019). https://doi.org/10.1557/jmr.2018.493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.493

Navigation