E.W. Müller: Das Feldionenmikroskop. Z. Phys. 131, 136 (1951).
Google Scholar
E.W. Müller: Field ion microscopy. Science 149, 591 (1965).
Google Scholar
E.W. Müller: Resolution of the atomic structure of a metal surface by the field ion microscope. J. Appl. Phys. 27, 474 (1956).
Google Scholar
E.W. Müller, J.A. Panitz, S.B. McLane, and E.W. Müller: Atom-probe field ion microscope. Rev. Sci. Instrum. 39, 83 (1968).
Google Scholar
D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: Field ion microscope study of atomic configuration at grain boundaries. Acta Metall. 12, 813 (1964).
Google Scholar
D.A. Smith, M.A. Fortes, A. Kelly, and B. Ralph: Contrast from stacking faults and partial dislocations in field-ion microscope. Philos. Mag. 17, 1065 (1968).
Google Scholar
A.S. Berger, D.N. Seidman, and R.W. Balluffi: A quantitative study of vacancy defects in quenched platinum by field ion microscopy and electrical resistivity—I. Experimental results. Acta Metall. 21, 137 (1973).
CAS
Google Scholar
M. Dagan, B. Gault, G.D.W. Smith, P.A.J. Bagot, and M.P. Moody: Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc. Microanal. 23, 1 (2017).
Google Scholar
L. Beavan, R. Scanlan, and D. Seidman: The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 1339 (1971).
CAS
Google Scholar
F. Vurpillot, M. Gilbert, and B. Deconihout: Towards the three-dimensional field ion microscope. Surf. Interface Anal. 39, 273 (2007).
CAS
Google Scholar
M. Dagan, L.R. Hanna, A. Xu, S.G. Roberts, G.D.W. Smith, B. Gault, P.D. Edmondson, P.A.J. Bagot, and M.P. Moody: Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387 (2015).
CAS
Google Scholar
S. Katnagallu, M. Dagan, S. Parviainen, A. Nematollahi, B. Grabowski, P.A.J. Bagot, N. Rolland, J. Neugebauer, D. Raabe, F. Vurpillot, M.P. Moody, and B. Gault: Impact of local electrostatic field rearrangement on field ionization. J. Phys. D: Appl. Phys. 51, 105601 (2018).
Google Scholar
F. Vurpillot, F. Danoix, M. Gilbert, S. Koelling, M. Dagan, and D.N. Seidman: True atomic-scale imaging in three dimensions: A review of the rebirth of field-ion microscopy. Microsc. Microanal. 23, 1 (2017).
Google Scholar
D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, and A. Menand: An atom probe for three-dimensional tomography. Nature 363, 432 (1993).
CAS
Google Scholar
M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, London, 2000).
Google Scholar
B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy (Springer, New York, New York, 2012).
Google Scholar
T.F. Kelly, T.T. Gribb, J.D. Olson, R.L. Martens, J.D. Shepard, S.A. Wiener, T.C. Kunicki, R.M. Ulfig, D.R. Lenz, E.M. Strennen, E. Oltman, J.H. Bunton, and D.R. Strait: First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373 (2004).
CAS
Google Scholar
G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, and B. Deconihout: Design of a delay-line position-sensitive detector with improved performance. Rev. Sci. Instrum. 76, 13304 (2005).
Google Scholar
O. Jagutzki, A. Cerezo, A. Czasch, R. Dorner, M. Hattass, M. Huang, V. Mergel, U. Spillmann, K. Ullmann-Pfleger, T. Weber, H. Schmidt-Bocking, and G.D.W. Smith: Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477 (2002).
Google Scholar
B. Gault, M.P. Moody, F. de Geuser, D. Haley, L.T. Stephenson, and S.P. Ringer: Origin of the spatial resolution in atom probe microscopy. Appl. Phys. Lett. 95, 034103 (2009).
Google Scholar
B. Gault, M.P. Moody, F. De Geuser, A. La Fontaine, L.T. Stephenson, D. Haley, and S.P. Ringer: Spatial resolution in atom probe tomography. Microsc. Microanal. 16, 99 (2010).
CAS
Google Scholar
E. Cadel, F. Vurpillot, R. Larde, S. Duguay, and B. Deconihout: Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J. Appl. Phys. 106, 44908 (2009).
Google Scholar
B. Gault, M. Müller, A. La Fontaine, M.P. Moody, A. Shariq, A. Cerezo, S.P. Ringer, and G.D.W. Smith: Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J. Appl. Phys. 108, 044904 (2010).
Google Scholar
M. Gruber, F. Vurpillot, A. Bostel, and B. Deconihout: A kinetic Monte Carlo approach on the influence of temperature. Surf. Sci. 605, 2025 (2011).
CAS
Google Scholar
A.R. Waugh, E.D. Boyes, and M.J. Southon: Investigations of field evaporation with field desorption microscope. Surf. Sci. 61, 109 (1976).
CAS
Google Scholar
F. Vurpillot and C. Oberdorfer: Modeling atom probe tomography: A review. Ultramicroscopy 159, 202 (2015).
CAS
Google Scholar
B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom probe crystallography. Mater. Today 15, 378 (2012).
CAS
Google Scholar
V.J. Araullo-Peters, B. Gault, S.L. Shrestha, L. Yao, M.P. Moody, S.P. Ringer, and J.M. Cairney: Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scr. Mater. 66, 907 (2012).
CAS
Google Scholar
A.J. Breen, K. Babinsky, A.C. Day, K. Eder, C.J. Oakman, P.W. Trimby, S. Primig, J.M. Cairney, and S.P. Ringer: Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc. Microanal. 23, 279–290 (2017).
CAS
Google Scholar
L. Yao, M.P. Moody, J.M. Cairney, D. Haley, A.V. Ceguerra, C. Zhu, and S.P. Ringer: Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111, 458 (2011).
CAS
Google Scholar
V.J. Araullo-Peters, A.J. Breen, A.V. Ceguerra, B. Gault, S.P. Ringer, and J.M. Cairney: A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 7 (2015).
CAS
Google Scholar
M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, and S.P. Ringer: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).
CAS
Google Scholar
M.P. Moody, F. Tang, B. Gault, S.P. Ringer, and J.M. Cairney: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493 (2011).
CAS
Google Scholar
D. Blavette, E. Cadel, A. Fraczkeiwicz, and A. Menand: Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317 (1999).
CAS
Google Scholar
E. Cadel, A. Fraczkiewicz, and D. Blavette: Suzuki effect on {001} stacking faults in boron-doped FeAl intermetallics. Scr. Mater. 51, 437 (2004).
CAS
Google Scholar
Y. Li, D. Raabe, M. Herbig, P-P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, and R. Kirchheim: Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 113, 106104 (2014).
Google Scholar
D. Blavette, A. Fraczkeiwicz, and E. Cadel: 3D atomic investigation of solute segregation to both planar and line defects in metallic alloys. J. Phys. IV 10, 111 (2000).
Google Scholar
D. Blavette, E. Cadel, C. Pareige, B. Deconihout, and P. Caron: Phase transformation and segregation to lattice defects in Ni-base superalloys. Microsc. Microanal. 13, 464 (2007).
CAS
Google Scholar
K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, and T.F. Kelly: Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 1370 (2007).
CAS
Google Scholar
K. Hoummada, D. Mangelinck, B. Gault, and M. Cabié: Nickel segregation on dislocation loops in implanted silicon. Scr. Mater. 64, 378 (2011).
CAS
Google Scholar
O. Cojocaru-Mirédin, T. Schwarz, and D. Abou-Ras: Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography. Scr. Mater. 148, 106–114 (2018).
Google Scholar
O. Cojocaru-Miredin, E. Cadel, F. Vurpillot, D. Mangelinck, and D. Blavette: Three-dimensional atomic-scale imaging of boron clusters in implanted silicon. Scr. Mater. 60, 285 (2009).
CAS
Google Scholar
K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).
CAS
Google Scholar
R. Estivill, G. Audoit, J-P. Barnes, A. Grenier, and D. Blavette: Preparation and analysis of atom probe tips by xenon focused ion beam milling. Microsc. Microanal. 22, 576–582 (2016).
CAS
Google Scholar
L. Reich, S.P. Ringer, and K. Hono: Origin of the initial rapid age hardening in an Al–1.7 at.% Mg–1.1 at.% Cu alloy. Philos. Mag. Lett. 79, 639 (1999).
CAS
Google Scholar
S.P. Ringer and K. Hono: Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101 (2000).
CAS
Google Scholar
M.L. Taheri, J.T. Sebastian, B.W. Reed, D.N. Seidman, and A.D. Rollett: Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2010).
CAS
Google Scholar
H. Aboulfadl, J. Deges, P. Choi, and D. Raabe: Dynamic strain aging studied at the atomic scale. Acta Mater. 86, 34 (2015).
CAS
Google Scholar
D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Additive manufacturing of metals. Acta Mater. 117, 371 (2016).
CAS
Google Scholar
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).
CAS
Google Scholar
Y. Harada and D.C. Dunand: Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scr. Mater. 48, 219 (2003).
CAS
Google Scholar
F. Tang, D.S. Gianola, M.P. Moody, K.J. Hemker, and J.M. Cairney: Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater. 60, 1038 (2012).
CAS
Google Scholar
P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, and B. Gault: The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr. Mater. 145, 76 (2018).
CAS
Google Scholar
P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation. Scr. Mater. 147, 59 (2018).
CAS
Google Scholar
S.K. Makineni, M. Lenz, P. Kontis, Z. Li, A. Kumar, P.J. Felfer, S. Neumeier, M. Herbig, E. Spiecker, D. Raabe, and B. Gault: Correlative microscopy—Novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: A case study in superalloys. JOM 70, 1736 (2018).
CAS
Google Scholar
M. Kuzmina, M. Herbig, D. Ponge, S. Sandlobes, and D. Raabe: Linear complexions: Confined chemical and structural states at dislocations. Science 349, 1080 (2015).
CAS
Google Scholar
G. Love: Dislocation pipe diffusion. Acta Metall. 12, 731 (1964).
Google Scholar
M. Legros, G. Dehm, E. Arzt, and T.J. Balk: Observation of giant diffusivity along dislocation cores. Science 319, 1646 (2008).
CAS
Google Scholar
M. Kolbe, A. Dlouhy, and G. Eggeler: Dislocation reactions at γ/γ′-interfaces during shear creep deformation in the macroscopic crystallographic shear system (001)[110] of CMSX6 superalloy single crystals at 1025 °C. Mater. Sci. Eng., A 246, 133 (1998).
Google Scholar
T.M. Pollock and A.S. Argon: Directional coarsening in nickel-base single crystals with volume fractions of coherent precipitates. Acta Metall. Mater. 42, 1859 (1994).
CAS
Google Scholar
R.C. Reed: The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, New York, 2006).
Google Scholar
T. Connolley, P.A.S. Reed, and M.J. Starink: Short crack initiation and growth at 600 °C in notched specimens of Inconel718. Mater. Sci. Eng., A 340, 139 (2003).
Google Scholar
M.S. Titus, A. Mottura, G. Babu Viswanathan, A. Suzuki, M.J. Mills, and T.M. Pollock: High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89, 423 (2015).
CAS
Google Scholar
Y. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker: Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 113, 335 (2016).
CAS
Google Scholar
S. Zaefferer and N-N. Elhami: Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20 (2014).
CAS
Google Scholar
S.K. Makineni, A. Kumar, M. Lenz, P. Kontis, T. Meiners, S. Zaefferer, C.H. Zenk, G. Eggeler, S. Neumeier, E. Spiecker, D. Raabe, and B. Gault: A new diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystalline CoNi based superalloy. Acta Mater. 155, 362 (2018).
CAS
Google Scholar
S.K. Makineni, M. Lenz, S. Neumeier, E. Spiecker, D. Raabe, and B. Gault: Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scr. Mater. 157, 62 (2018).
CAS
Google Scholar
T. Kato: Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. Jpn. J. Appl. Phys. 56, 04CA02 (2017).
Google Scholar
T. Schwarz, G. Stechmann, B. Gault, O. Cojocaru-Mirédin, R. Wuerz, and D. Raabe: Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se2 grain boundaries. Prog. Photovoltaics Res. Appl. 26, 196 (2018).
CAS
Google Scholar
D. Abou-Ras, S.S. Schmidt, N. Schäfer, J. Kavalakkatt, T. Rissom, T. Unold, R. Mainz, A. Weber, T. Kirchartz, E. Simsek Sanli, P.A. van Aken, Q.M. Ramasse, H-J. Kleebe, D. Azulay, I. Balberg, O. Millo, O. Cojocaru-Mirédin, D. Barragan-Yani, K. Albe, J. Haarstrich, and C. Ronning: Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells—A review. Phys. Status Solidi RRL 10, 363 (2016).
CAS
Google Scholar
S-H. Wei, S.B. Zhang, and A. Zunger: Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys. 85, 7214 (1999).
CAS
Google Scholar
A. Kwiatkowski da Silva, D. Ponge, Z. Peng, G. Inden, Y. Lu, A. Breen, B. Gault, and D. Raabe: Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe–Mn alloys. Nat. Commun. 9, 1137 (2018).
Google Scholar
A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Confined chemical and structural states at dislocations in Fe–9 wt% Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 124, 305 (2017).
Google Scholar
P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer: Grain boundary complexions. Acta Mater. 62, 1 (2014).
CAS
Google Scholar
T.J. Rupert: The role of complexions in metallic nano-grain stability and deformation. Curr. Opin. Solid State Mater. Sci. 20, 257 (2016).
CAS
Google Scholar
M. Kuzmina, D. Ponge, and D. Raabe: Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt% medium Mn steel. Acta Mater. 86, 182 (2015).
CAS
Google Scholar
H. Numakura and M. Koiwa: Hydride precipitation in titanium. Acta Metall. 32, 1799 (1984).
CAS
Google Scholar
C. Briant, Z. Wang, and N. Chollocoop: Hydrogen embrittlement of commercial purity titanium. Corros. Sci. 44, 1875 (2002).
CAS
Google Scholar
H.G. Nelson: A film-rupture model of hydrogen-induced, slow crack growth in acicular alpha-beta titanium. Metall. Trans. A 7, 621 (1976).
Google Scholar
L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, and C.W. Domby: Metallography and microstructures of titanium and its alloys. Mater. Park. OH ASM Int. 9, 899 (2004).
Google Scholar
R. Ding and I.P. Jones: In situ hydride formation in titanium during focused ion milling. J. Electron Microsc. 60, 1 (2011).
CAS
Google Scholar
Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, and B. Gault: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater. 150, 273 (2018).
CAS
Google Scholar