Skip to main content

Advertisement

Log in

C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As an important member of semiconducting transition metal oxides, MoO2 nanomaterials have many advantages in optical and electrical applications. However, MoO2 itself has no significant photocatalytic performance possibly because of its inferior conductivity and strong recombination of photogenerated electron–hole pairs. Here, we propose a facile, one-step pyrolysis method to prepare a novel C fibers@MoO2 nanoparticles core–shell composite, where the oxidative MoO2 nanoparticles in situ grew on the surface of conducting C fibers. Due to the compositing of MoO2 and C fibers, during photocatalysis tests, the recombination of photogenerated electron–hole pairs was effectively inhibited, and the lifetime of the photogenerated carries was efficiently prolonged, finally significantly improving the solar-driven photocatalytic activity on degrading various organic and inorganic pollutants in water, such as methylene blue, rhodamine B, phenol, and potassium dichromate, showing the great potential for environmental remediation by degrading toxic industrial chemicals in waste water under sunlight. Moreover, the composite presented good stability in composition and structure during the repeated use and long-term storage. In addition, this one-step growth method is an easy-to-handle, environmentally friendly, and low-cost synthesis method for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Liu, L.H. Tian, X.Y. Tan, X. Li, and X.B. Chen: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).

    Article  CAS  Google Scholar 

  2. Y. Li, D. Lu, L.Q. Zhou, M.L. Ye, X. Xiong, K.Z. Yang, Y.X. Pan, M.H. Chen, P. Wu, T. Li, Y.T. Chen, Z. Wang, and Q.H. Xia: Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. J. Mater. Res. 31, 3712 (2016).

    Article  CAS  Google Scholar 

  3. J.Q. Wen, X. Li, W. Liu, Y.P. Fang, J. Xie, and Y.H. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  4. Z. Hu, G. Liu, X. Chen, Z. Shen, and J. Yu: Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 26, 4445 (2016).

    Article  CAS  Google Scholar 

  5. Z. Feng, L. Zeng, Y.J. Chen, Y.Y. Ma, C.R. Zhao, R.S. Jin, Y. Lu, Y. Wu, and Y.M. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  6. J. Liu, Z. Zhang, C. Pan, Y. Zhao, X. Su, Y. Zhou, and D. Yu: Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation. Mater. Lett. 58, 3812 (2004).

    Article  CAS  Google Scholar 

  7. F. Wang and B. Lu: Well-aligned MoO2 nanowires arrays: Synthesis and field emission properties. Physica B 404, 190 (2009).

    Article  CAS  Google Scholar 

  8. M.M.Y.A. Alsaif, M.R. Field, B.J. Murdoch, T. Daeneke, K. Latham, A.F. Chrimes, A.S. Zoolfakar, S.P. Russo, J.Z. Ou, and K. Kalantar-zadeh: Substoichiometric two-dimensional molybdenum oxide flakes: A plasmonic gas sensing platform. Nanoscale 6, 12780 (2014).

    Article  CAS  Google Scholar 

  9. Y.M. Sun, X.L. Hu, W. Luo, and Y.H. Huang: Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5, 7100 (2011).

    Article  CAS  Google Scholar 

  10. W.H. Edgar, M.B. Jeremy, and R.H. Holm: Thermodynamic fitness of molybdenum (IV,VI) complexes for oxygen-atom transfer reactions, including those with enzymic substrates. J. Am. Chem. Soc. 108, 6992 (1986).

    Article  Google Scholar 

  11. L. Liao, S.N. Wang, J.J. Xiao, X.J. Bian, and Y.H. Zhang: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387 (2013).

    Article  Google Scholar 

  12. D.O. Scanlon, G.W. Watson, D.J. Payne, and G.R. Atkinson: Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 114, 4636 (2010).

    Article  CAS  Google Scholar 

  13. X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, and H. Zheng: Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J. Power Sources 237, 80 (2013).

    Article  CAS  Google Scholar 

  14. Z. Liang, H. Wu, Z. Wang, and X. Lou: Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 3, 4853 (2011).

    Article  CAS  Google Scholar 

  15. Y.L. Liu, H. Zhang, P. Ouyang, and Z.C. Li: One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim. Acta 102, 429 (2013).

    Article  CAS  Google Scholar 

  16. S. Yoon, K. Jung, C. Jin, and K. Shin: Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. J. Alloys Compd. 536, 179 (2012).

    Article  CAS  Google Scholar 

  17. B.H. Zhang, Y.G. Xue, A.N. Jiang, Z.M. Xue, Z.H. Li, and J.C. Hao: Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 9, 7217 (2017).

    Article  CAS  Google Scholar 

  18. S.Y. Gu, M.L. Qin, H.A. Zhang, J.D. Ma, H.Y. Wu, and X.H. Qu: Facile solution combustion synthesis of MoO2 nanoparticles as efficient photocatalysts. CrystEngComm 19, 6516 (2017).

    Article  CAS  Google Scholar 

  19. I.V. Silaev, S.A. Khubezhov, A.G. Ramonova, G.S. Grigorkina, A.G. Kaloeva, Z.S. Demeev, A.P. Bliev, D. Sekiba, S. Ogura, K. Fukutani, and T.T. Magkoev: Photoinduced conversion of carbon dioxide and water molecules to methanol on the surface of molybdenum oxide MoOx ( x < 2). Tech. Phys. Lett. 42, 271 (2016).

    Article  CAS  Google Scholar 

  20. N. Dukstiene and D. Sinkeviciute: Photoelectrochemical properties of MoO2 thin films. J. Solid State Electrochem. 17, 1175 (2013).

    Article  CAS  Google Scholar 

  21. L.L. Zou, X.Q. Shen, Q.J. Wang, Z. Wang, X.C. Yang, and M.X. Jing: Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous rhodamine B degradation. J. Mater. Res. 30, 2763 (2015).

    Article  CAS  Google Scholar 

  22. Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, and H. Zhang: 2D transition-metal-dichalcogenide-nanosheet- based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917 (2016).

    Article  CAS  Google Scholar 

  23. Q. Peng, Z.Y. Wang, B.S. Sa, B. Wu, and Z.M. Sun: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6, 31994 (2016).

    Article  CAS  Google Scholar 

  24. T. Xia, W. Zhang, Z.H. Wang, Y.L. Zhang, X.Y. Song, J. Murowchick, V. Battaglia, G. Liu, and X.B. Chen: Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6, 109 (2014).

    Article  CAS  Google Scholar 

  25. S. Zou, Z.H. Fu, C. Xiang, W.F. Wu, S.P. Tang, Y.C. Liu, and D.L. Yin: Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chin. J. Catal. 36, 1077 (2015).

    Article  CAS  Google Scholar 

  26. X. Liu, Y.H. Zhang, Y.S. Jia, J.Z. Jiang, Y.B. Wang, X.S. Chen, and T. Gui: Visible light-responsive carbon-decorated p-type semiconductor CaFe2O4 nanorod photocatalyst for efficient remediation of organic pollutants. Chin. J. Catal. 38, 1770 (2017).

    Article  CAS  Google Scholar 

  27. H.L. Gao, J.M. Liu, J. Zhang, Z.Q. Zhu, G.L. Zhang, and Q.J. Liu: Influence of carbon and yttrium co-doping on the photocatalytic activity of mixed phase TiO2. Chin. J. Catal. 38, 1688 (2017).

    Article  CAS  Google Scholar 

  28. J.T. Zhang and F. Huang: Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Appl. Surf. Sci. 358, 287 (2015).

    Article  CAS  Google Scholar 

  29. K. Li, F.Y. Su, and W.D. Zhang: Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl. Surf. Sci. 375, 110 (2016).

    Article  CAS  Google Scholar 

  30. A. Chen, C. Li, R. Tang, L. Yin, and Y. Qi: MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Phys. Chem. Chem. Phys. 15, 13601 (2013).

    Article  CAS  Google Scholar 

  31. X. Liu, W. Ji, J. Liang, L. Peng, and W. Hou: MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties. Phys. Chem. Chem. Phys. 16, 20570 (2014).

    Article  CAS  Google Scholar 

  32. Z.R. Li, Y.L. Fu, M. Jiang, T.D. Hu, T. Liu, and Y.N. Xie: Active carbon supported Mo–K catalysts used for alcohol synthesis. J. Catal. 199, 155 (2001).

    Article  CAS  Google Scholar 

  33. X. Pan, S. Li, Z. Wang, L. Yang, K. Zhu, L. Ren, M. Lei, and J. Liu: Core–shell MoO2/C nanospheres embedded in bubble sheet-like carbon film as lithium ion battery anodes. Mater. Lett. 199, 139 (2017).

    Article  CAS  Google Scholar 

  34. Y. Wang, L. Yu, and X.W. Lou: Formation of triple-shelled molybdenum-polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries. Angew. Chem. Int. Ed. 55, 14668 (2016).

    Article  CAS  Google Scholar 

  35. J. Jiang, W. Yang, H. Wang, Y. Zhao, J. Guo, J. Zhao, M. Beidaghi, and L. Gao: Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism. Electrochim. Acta 240, 379 (2017).

    Article  CAS  Google Scholar 

  36. B. Liu, X. Zhao, T. Yuan, D. Zhao, C. Hu, and M. Gao: A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Phys. Chem. Chem. Phys. 15, 8831 (2013).

    Article  CAS  Google Scholar 

  37. Z. Chen, T. Yang, H. Shi, T. Wang, M. Zhang, and G. Cao: Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage. Adv. Mater. Interfaces 4, 1600816 (2017).

    Article  CAS  Google Scholar 

  38. W. Cho, J.H. Song, J. Kim, G. Jeong, E.Y. Lee, and Y. Kim: Electrochemical characteristics of nano-sized MoO2/C composite anode materials for lithium-ion batteries. J. Appl. Electrochem. 42, 909 (2012).

    Article  CAS  Google Scholar 

  39. H. Huang, K. Liu, K. Chen, Y.L. Zhang, Y.H. Zhang, and S.C. Wang: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).

    Article  CAS  Google Scholar 

  40. E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. Liu, and X. Xu: Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts. Ceram. Int. 42, 2198 (2016).

    Article  CAS  Google Scholar 

  41. A. Bhaskar, M. Deepa, T.N. Rao, and U.V. Varadaraju: Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169 (2012).

    Article  CAS  Google Scholar 

  42. E. Zhou, C. Wang, M. Shao, X. Deng, and X. Xu: MoO2 nanoparticles grown on carbon fibers as anode materials for lithium-ion batteries. Ceram. Int. 43, 760 (2017).

    Article  CAS  Google Scholar 

  43. S. Qiu, G.X. Lu, J.R. Liu, H.L. Lv, C.X. Hu, B. Li, X.R. Yan, J. Guo, and Z.H. Guo: Enhanced electrochemical performances of MoO2 nanoparticles composited with carbon nanotubes for lithium-ion battery anode. RSC Adv. 5, 87286 (2015).

    Article  CAS  Google Scholar 

  44. J.G. Choi and L.T. Thompson: XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143 (1996).

    Article  CAS  Google Scholar 

  45. X.Y. Chen, Z.J. Zhang, X.X. Li, C.W. Shi, and X.L. Li: Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach. Chem. Phys. Lett. 418, 105 (2006).

    Article  CAS  Google Scholar 

  46. A. Deurbergue and A. Oberlin: Stabilization and carbonization of pan-based carbon fibers as related to mechanical properties. Carbon 29, 621 (1991).

    Article  CAS  Google Scholar 

  47. J. Yu, B. Huang, X. Qin, X.Y. Zhang, Z.Y. Wang, and H.X. Liu: Hydrothermal synthesis and characterization of ZnO films with different nanostructures. Appl. Surf. Sci. 257, 5563 (2011).

    Article  CAS  Google Scholar 

  48. Z.G. Shen, Z.Y. Zhao, J.W. Qian, Z.J. Peng, and X.L. Fu: Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).

    Article  CAS  Google Scholar 

  49. J.W. Qian, Z.Y. Zhao, Z.G. Shen, G.L. Zhang, Z.J. Peng, and X.L. Fu: A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 30, 3746 (2015).

    Article  CAS  Google Scholar 

  50. P.M. Mortensen, H.W.P. de Carvalho, J.D. Grunwaldt, P.A. Jensen, and A.D. Jensen: Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. J. Catal. 328, 208 (2015).

    Article  CAS  Google Scholar 

  51. P. Mytych, P. Giela, and Z. Stasicda: Photoredox processes in the Cr(VI)–Cr(III)–oxalate system and their environmental relevance. Appl. Catal., B 59, 161 (2005).

    Article  CAS  Google Scholar 

  52. Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D.W. Zeng, and C.S. Xie: In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal., B 202, 489 (2017).

    Article  CAS  Google Scholar 

  53. J.Q. Wen, X. Li, H.Q. Li, S. Ma, K.L. He, Y.H. Xu, Y.P. Fang, W. Liu, and Q.Z. Gao: Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Appl. Surf. Sci. 358, 204 (2015).

    Article  CAS  Google Scholar 

  54. J.Q. Wen, J. Xie, Z.H. Yang, R.C. Shen, H.Y. Li, X.Y. Luo, X.B. Chen, and X. Li: Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons. ACS Sustain. Chem. Eng. 5, 2224 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support for this work from the National Natural Science Foundation of China (Grant Nos. 11674035 and 61274015) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Xiuli Fu.

Supplementary Material

43578_2018_33060685_MOESM1_ESM.pdf

Supplementary Materials: C fibers@MoO2 nanoparticles core-shell composite: highly efficient solar-driven photocatalyst (approximately 736 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Peng, Z., Li, H. et al. C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst. Journal of Materials Research 33, 685–698 (2018). https://doi.org/10.1557/jmr.2018.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.32

Navigation