Skip to main content
Log in

Size effects on plasticity in high-entropy alloys

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current review outlines the size-dependent plastic behavior of high-entropy alloys (HEAs) and the underlying deformation mechanisms. Particular focus is laid upon the influence of microstructural design on the small-scale deformation characteristics. The role of defect types as carriers of plasticity is appraised and correlated with the frequently observed mechanical behavior peculiar to the breed of HEAs. Deformation response is classified on the basis of mechanical testing techniques probing intrinsic (nanoindentation techniques) as well as extrinsic size (micro/nanopillar compression) effects. The mechanisms of incipient plasticity and serrated flow behavior in HEAs are discussed. Furthermore, the role of interfaces between crystallographically dissimilar lattices on small-scale deformation behavior in these alloys is assessed. The article provides a clear overview of the existing HEA research in this avenue as well as the critical knowledge gaps that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. P-K. Huang, J-W. Yeh, T-T. Shun, and S-K. Chen: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).

    Article  CAS  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377 (Suppl. C), 213 (2004).

    Article  Google Scholar 

  4. S. Praveen and H.S. Kim: High-entropy alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 20, 1700645 (2018).

    Article  Google Scholar 

  5. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

  6. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122 (Suppl. C), 448 (2017).

    Article  CAS  Google Scholar 

  7. D.B. Miracle: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).

    Article  CAS  Google Scholar 

  8. L.M. Martyushev and V.D. Seleznev: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1 (2006).

    Article  CAS  Google Scholar 

  9. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).

    Article  CAS  Google Scholar 

  10. W. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).

    Article  CAS  Google Scholar 

  11. R. Carroll, C. Lee, C-W. Tsai, J-W. Yeh, J. Antonaglia, B.A.W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, and K.A. Dahmen: Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 5, 16997 (2015).

    Article  CAS  Google Scholar 

  12. J-W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).

    Article  CAS  Google Scholar 

  13. J-W. Yeh: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).

    Article  CAS  Google Scholar 

  14. J-W. Yeh, S-J. Lin, T-S. Chin, J-Y. Gan, S-K. Chen, T-T. Shun, C-H. Tsau, and S-Y. Chou: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).

    Article  Google Scholar 

  15. M.C. Gao, J-W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications (Springer, New York, NY, 2016).

    Book  Google Scholar 

  16. W-R. Wang, W-L. Wang, S-C. Wang, Y-C. Tsai, C-H. Lai, and J-W. Yeh: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26 (Suppl. C), 44 (2012).

    Article  Google Scholar 

  17. Z.J. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).

    Article  CAS  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  19. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. De Hosson: Secondary phases in AlxCoCrFeNi high-entropy alloys: An in situ TEM heating study and thermodynamic appraisal. Acta Mater. 131 (Suppl. C), 206 (2017).

    Article  CAS  Google Scholar 

  20. H.Y. Diao, R. Feng, K.A. Dahmen, and P.K. Liaw: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).

    Article  CAS  Google Scholar 

  21. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, and P.K. Liaw: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647 (Suppl. C), 229 (2015).

    Article  CAS  Google Scholar 

  22. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50 (Suppl. C), 32 (2015).

    Article  CAS  Google Scholar 

  23. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    Article  CAS  Google Scholar 

  24. A. Gali and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  CAS  Google Scholar 

  25. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (Suppl. C), 1 (2014).

    Article  Google Scholar 

  26. S. Gorsse, D.B. Miracle, and O.N. Senkov: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    Article  CAS  Google Scholar 

  27. M-H. Tsai and J-W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).

    Article  Google Scholar 

  28. B.S. Murty, J-W. Yeh, and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, Amsterdam, Netherlands, 2014).

    Google Scholar 

  29. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).

    Article  CAS  Google Scholar 

  30. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    Article  CAS  Google Scholar 

  31. N.G. Jones, K.A. Christofidou, and H.J. Stone: Rapid precipitation in an Al0.5CrFeCoNiCu high entropy alloy. Mater. Sci. Technol. 31, 1171 (2015).

    Article  CAS  Google Scholar 

  32. N.G. Jones, J.W. Aveson, A. Bhowmik, B.D. Conduit, and H.J. Stone: On the entropic stabilisation of an Al0.5CrFeCoNiCu high entropy alloy. Intermetallics 54, 148 (2014).

    Article  CAS  Google Scholar 

  33. N.G. Jones, A. Frezza, and H.J. Stone: Phase equilibria of an Al0.5CrFeCoNiCu high entropy alloy. Mater. Sci. Eng., A 615, 214 (2014).

    Article  CAS  Google Scholar 

  34. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100 (Suppl. C), 90 (2015).

    Article  CAS  Google Scholar 

  35. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).

    Article  CAS  Google Scholar 

  36. S. Praveen, B.S. Murty, and R.S. Kottada: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534 (Suppl. C), 83 (2012).

    Article  CAS  Google Scholar 

  37. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112 (Suppl. C), 40 (2016).

    Article  CAS  Google Scholar 

  38. E.J. Pickering, H.J. Stone, and N.G. Jones: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645 (Suppl. C), 65 (2015).

    Article  CAS  Google Scholar 

  39. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113 (Suppl. C), 106 (2016).

    Article  CAS  Google Scholar 

  40. I. Basu, V. Ocelík, and J.T.M. De Hosson: Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater. 150, 104 (2018).

    Article  CAS  Google Scholar 

  41. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  Google Scholar 

  42. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).

    Article  CAS  Google Scholar 

  43. Z. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131 (Suppl. C), 323 (2017).

    Article  CAS  Google Scholar 

  44. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  45. S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, and D. Raabe: Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).

    Article  CAS  Google Scholar 

  46. M. Wang, Z. Li, and D. Raabe: In situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236 (2018).

    Article  CAS  Google Scholar 

  47. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 147, 213 (2018).

    Article  CAS  Google Scholar 

  48. Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J-J. Kai: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 148, 51 (2018).

    Article  CAS  Google Scholar 

  49. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).

    Article  CAS  Google Scholar 

  50. J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson: The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys. Mater. Lett. 176 (Suppl. C), 29 (2016).

    Article  CAS  Google Scholar 

  51. J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson: On the onset of nano-ordered phase distributions in high-entropy alloys. Rev. Adv. Mater. Sci. 48, 105 (2017).

    CAS  Google Scholar 

  52. V. Ocelík, N. Janssen, S.N. Smith, and J.T.M.D. Hosson: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).

    Article  Google Scholar 

  53. A. Manzoni, H. Daoud, R. Völkl, U. Glatzel, and N. Wanderka: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132 (Suppl. C), 212 (2013).

    Article  CAS  Google Scholar 

  54. A. Munitz, S. Salhov, S. Hayun, and N. Frage: Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloy. Comp. 683 (Suppl. C), 221 (2016).

    Article  CAS  Google Scholar 

  55. Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, and L. Sun: The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals 7, 57 (2017).

    Article  Google Scholar 

  56. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  57. Y. Zou, H. Ma, and R. Spolenak: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).

    Article  Google Scholar 

  58. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  59. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    Article  CAS  Google Scholar 

  60. M. Feuerbacher, M. Heidelmann, and C. Thomas: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).

    Article  Google Scholar 

  61. C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, and W.L. Mao: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).

    Article  CAS  Google Scholar 

  62. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 3322 (2016).

    Article  CAS  Google Scholar 

  63. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  64. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118 (Suppl. C), 152 (2016).

    Article  CAS  Google Scholar 

  65. Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130, 96 (2017).

    Article  CAS  Google Scholar 

  66. I. Basu, H. Fidder, V. Ocelík, and J.T.M. de Hosson: Local stress states and microstructural damage response associated with deformation twins in hexagonal close packed metals. Crystals 8, 1 (2017).

    Article  Google Scholar 

  67. I. Basu and T. Al-Samman: Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 96, 111 (2015).

    Article  CAS  Google Scholar 

  68. I. Basu, G. Gottstein, and B.D. Zander: Recrystallization mechanisms in wrought magnesium alloys containing rare-earth elements. Dissertation, RWTH Aachen University, Aachen, Germany, 2016, 2017.

    Google Scholar 

  69. Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, and R.O. Ritchie: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).

    Article  CAS  Google Scholar 

  70. C. Haase and L.A. Barrales-Mora: Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 150, 88 (2018).

    Article  CAS  Google Scholar 

  71. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  72. J-P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, and I. Guillot: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng., A 645, 255 (2015).

    Article  Google Scholar 

  73. G. Dirras, J. Gubicza, A. Heczel, L. Lilensten, J-P. Couzinié, L. Perrière, I. Guillot, and A. Hocini: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).

    Article  CAS  Google Scholar 

  74. G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J-P. Couzinié, L. Perrière, T. Chauveau, and I. Guillot: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng., A 654, 30 (2016).

    Article  CAS  Google Scholar 

  75. M. Feuerbacher: Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy. Sci. Rep. 6, 29700 (2016).

    Article  CAS  Google Scholar 

  76. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).

    Article  CAS  Google Scholar 

  77. L. Lilensten, J-P. Couzinié, J. Bourgon, L. Perrière, G. Dirras, F. Prima, and I. Guillot: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 110 (2017).

    Article  CAS  Google Scholar 

  78. J. Joseph, N. Stanford, P. Hodgson, and D.M. Fabijanic: Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloy. Comp. 726, 885 (2017).

    Article  CAS  Google Scholar 

  79. A.M. Giwa, P.K. Liaw, K.A. Dahmen, and J.R. Greer: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extreme Mech. Lett. 8 (Suppl. C), 220 (2016).

    Article  Google Scholar 

  80. R. Raghavan, C. Kirchlechner, B.N. Jaya, M. Feuerbacher, and G. Dehm: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).

    Article  CAS  Google Scholar 

  81. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    Article  CAS  Google Scholar 

  82. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, and E.P. George: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).

    Article  CAS  Google Scholar 

  83. Q. Jiao, G-D. Sim, M. Komarasamy, R.S. Mishra, P.K. Liaw, and J.A. El-Awady: Thermo-mechanical response of single-phase face-centered-cubic AlxCoCrFeNi high-entropy alloy microcrystals. Mater. Res. Lett. 6, 300 (2018).

    Article  CAS  Google Scholar 

  84. Q.F. He, J.F. Zeng, S. Wang, Y.F. Ye, C. Zhu, T.G. Nieh, Z.P. Lu, and Y. Yang: Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 5, 300 (2017).

    Article  CAS  Google Scholar 

  85. L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, and T.G. Nieh: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).

    Article  CAS  Google Scholar 

  86. D. Wu, J.S.C. Jang, and T.G. Nieh: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).

    Article  CAS  Google Scholar 

  87. S. Mridha, S. Das, S. Aouadi, S. Mukherjee, and R.S. Mishra: Nanomechanical behavior of CoCrFeMnNi high-entropy alloy. JOM 67, 2296 (2015).

    Article  CAS  Google Scholar 

  88. D-H. Lee, M-Y. Seok, Y. Zhao, I-C. Choi, J. He, Z. Lu, J-Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).

    Article  CAS  Google Scholar 

  89. R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, and K.V. Rajulapati: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58 (2017).

    Article  CAS  Google Scholar 

  90. Y.X. Ye, Z.P. Lu, and T.G. Nieh: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130 (Suppl. C), 64 (2017).

    Article  CAS  Google Scholar 

  91. C. Zhu, Z.P. Lu, and T.G. Nieh: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).

    Article  CAS  Google Scholar 

  92. L. Yu, S. Chen, J. Ren, Y. Ren, F. Yang, K.A. Dahmen, and P.K. Liaw: Plasticity performance of Al0.5CoCrCuFeNi high-entropy alloys under nanoindentation. J. Iron Steel Res. Int. 24, 390 (2017).

    Article  Google Scholar 

  93. Z-M. Jiao, S-G. Ma, G-Z. Yuan, Z-H. Wang, H-J. Yang, and J-W. Qiao: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).

    Article  CAS  Google Scholar 

  94. Y. Sun, G. Zhao, X. Wen, J. Qiao, and F. Yang: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy. J. Alloy. Comp. 608, 49 (2014).

    Article  CAS  Google Scholar 

  95. Z.M. Jiao, M.Y. Chu, H.J. Yang, Z.H. Wang, and J.W. Qiao: Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Technol. 31, 1244 (2015).

    Article  CAS  Google Scholar 

  96. S. Chen, L. Yu, J. Ren, X. Xie, X. Li, Y. Xu, G. Zhao, P. Li, F. Yang, Y. Ren, and P.K. Liaw: Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci. Rep. 6, 29798 (2016).

    Article  CAS  Google Scholar 

  97. I. Basu, V. Ocelík, and J.T.M. De Hosson: BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mate. 157, 83 (2018).

    Article  CAS  Google Scholar 

  98. Z. Shen, R.H. Wagoner, and W.A.T. Clark: Dislocation and grain boundary interactions in metals. Acta Metall. 36, 3231 (1988).

    Article  CAS  Google Scholar 

  99. W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: On the criteria for slip transmission across interfaces in polycrystals. Scripta Metall. Mater. 26, 203 (1992).

    Article  CAS  Google Scholar 

  100. A.C. Lund, C.A. Schuh, and J.K. Mason: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  Google Scholar 

  101. J.K. Mason, A.C. Lund, and C.A. Schuh: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).

    Article  Google Scholar 

  102. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, England, 1987).

    Google Scholar 

  103. J.R. Morris, H. Bei, G.M. Pharr, and E.P. George: Size effects and stochastic behavior of nanoindentation pop In. Phys. Rev. Lett. 106, 165502 (2011).

    Article  CAS  Google Scholar 

  104. W.A. Soer, J.T.M. De Hosson, A.M. Minor, Z. Shan, S.A. Syed Asif, and O.L. Warren: Incipient plasticity in metallic thin films. Appl. Phys. Lett. 90, 181924 (2007).

    Article  Google Scholar 

  105. W.A. Soer, J.T.M.D. Hosson, A.M. Minor, J.W. Morris, and E.A. Stach: Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 52, 5783 (2004).

    Article  CAS  Google Scholar 

  106. J.T.M.D. Hosson, W.A. Soer, A.M. Minor, Z. Shan, E.A. Stach, S.A.S. Asif, and O.L. Warren: In situ TEM nanoindentation and dislocation-grain boundary interactions: A tribute to david brandon. J. Mater. Sci. 41, 7704 (2006).

    Article  CAS  Google Scholar 

  107. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U. S. A. 104, 3031 (2007).

    Article  CAS  Google Scholar 

  108. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Article  Google Scholar 

  109. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, and Y.L. Wang: Serration and noise behaviors in materials. Prog. Mater. Sci. 90 (Suppl. C), 358 (2017).

    Article  CAS  Google Scholar 

  110. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  111. J-M. Dubois: Complex metallic alloys: Clarity through complexity. Nat. Mater. 9, 287 (2010).

    Article  CAS  Google Scholar 

  112. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  113. A. van den Beukel: Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A 30, 197 (1975).

    Article  Google Scholar 

  114. R.A. Mulford and U.F. Kocks: New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall. 27, 1125 (1979).

    Article  CAS  Google Scholar 

  115. P. Rodriguez: Serrated plastic flow. Bull. Mater. Sci. 6, 653 (1984).

    Article  Google Scholar 

  116. G. Gottstein: Physical Foundations of Materials Science (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2013).

    Google Scholar 

  117. Y. Brechet and Y. Estrin: On the influence of precipitation on the Portevin–Le Chatelier effect. Acta Metall. Mater. 43, 955 (1995).

    Article  CAS  Google Scholar 

  118. J. Antonaglia, X. Xie, Z. Tang, C-W. Tsai, J.W. Qiao, Y. Zhang, M.O. Laktionova, E.D. Tabachnikova, J.W. Yeh, O.N. Senkov, M.C. Gao, J.T. Uhl, P.K. Liaw, and K.A. Dahmen: Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66, 2002 (2014).

    Article  CAS  Google Scholar 

  119. M.A. Laktionova, E.D. Tabchnikova, Z. Tang, and P.K. Liaw: Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300K. Low Temp. Phys. 39, 630 (2013).

    Article  CAS  Google Scholar 

  120. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl: Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102, 175501 (2009).

    Article  Google Scholar 

  121. K. Dahmen, D. Ertaş, and Y. Ben-Zion: Gutenberg-Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys. Rev. E 58, 1494 (1998).

    Article  CAS  Google Scholar 

  122. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  123. I. Basu and T. Al-Samman: Competitive twinning behavior in magnesium and its impact on recrystallization and texture formation. Mater. Sci. Eng., A 707 (Suppl. C), 232 (2017).

    Article  CAS  Google Scholar 

  124. C. Drouven, I. Basu, T. Al-Samman, and S. Korte-Kerzel: Twinning effects in deformed and annealed magnesium–neodymium alloys. Mater. Sci. Eng., A 647, 91 (2015).

    Article  CAS  Google Scholar 

  125. I. Basu and T. Al-Samman: Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 67, 116 (2014).

    Article  CAS  Google Scholar 

  126. T.H. Blewitt, R.R. Coltman, and J.K. Redman: Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651 (1957).

    Article  CAS  Google Scholar 

  127. G.F. Bolling and R.H. Richman: Continual mechanical twinning: Part I: Formal description. Acta Metall. 13, 709 (1965).

    Article  Google Scholar 

  128. G.F. Bolling and R.H. Richman: Continual mechanical twinning: Part II: Standard experiments. Acta Metall. 13, 723 (1965).

    Article  Google Scholar 

  129. Z.Y. Liang, J.T.M. De Hosson, and M.X. Huang: Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling. Acta Mater. 129, 1 (2017).

    Article  CAS  Google Scholar 

  130. B.C. De Cooman, J. Kim, and S. Lee: Heterogeneous deformation in twinning-induced plasticity steel. Scr. Mater. 66, 986 (2012).

    Article  Google Scholar 

  131. T-H. Ahn, C-S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540 (2010).

    Article  CAS  Google Scholar 

  132. W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53, 4665 (2005).

    Article  CAS  Google Scholar 

  133. I. Basu, V. Ocelík, and J.T.M. De Hosson: Measurement of spatial stress gradients near grain boundaries. Scr. Mater. 136 (Suppl. C), 11 (2017).

    Article  CAS  Google Scholar 

  134. O. Khalfallah, M. Condat, and L. Priester: Image force on a lattice dislocation due to a grain boundary in b.c.c. metals. Philos. Mag. A 67, 231 (1993).

    Article  Google Scholar 

  135. L. Priester and O. Khalfallah: Image force on a lattice dislocation due to a grain boundary in anisotropic f.c.c. materials. Philos. Mag. A 69, 471 (1994).

    Article  CAS  Google Scholar 

  136. J.P. Hirth: The influence of grain boundaries on mechanical properties. Metall. Trans. 3, 3047 (1972).

    Article  CAS  Google Scholar 

  137. A.K. Head: X. The interaction of dislocations and boundaries. London, Edinburgh, and Dublin Phil. Mag. J. Sci. 44, 92 (1953).

    Article  CAS  Google Scholar 

  138. I. Basu, V. Ocelík, and J.T.M. De Hosson: Experimental determination and theoretical analysis of local residual stress at grain scale. In WIT Transactions on Engineering Sciences, D. Northwood, T. Rang, J. De Hosson, and C.A. Brebbia, eds. (WIT Press, Southampton, U.K., 2017); pp. 3–14.

    Google Scholar 

  139. F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, and L. Vitos: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was carried out under project number T61.1.14545 in the framework of the Research Program of the Materials innovation institute (M2i) (www.m2i.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, I., Ocelík, V. & De Hosson, J.T.M. Size effects on plasticity in high-entropy alloys. Journal of Materials Research 33, 3055–3076 (2018). https://doi.org/10.1557/jmr.2018.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.282

Navigation